Пекка Теерикор - Эволюция Вселенной и происхождение жизни
- Название:Эволюция Вселенной и происхождение жизни
- Автор:
- Жанр:
- Издательство:Эксмо
- Год:2010
- Город:Москва
- ISBN:нет данных
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Пекка Теерикор - Эволюция Вселенной и происхождение жизни краткое содержание
Сэр Исаак Ньютон сказал по поводу открытий знаменитую фразу: «Если я видел дальше других, то потому, что стоял на плечах гигантов».
«Эволюция Вселенной и происхождение жизни — описывает восхождение на эти метафорические плечи, проделанное величайшими учеными, а также увлекательные детали биографии этих мыслителей. Впервые с помощью одной книги читатель может совершить путешествие по истории Вселенной, какой она представлялась на всем пути познания ее природы человеком. Эта книга охватывает всю науку о нашем происхождении — от субатомных частиц к белковым цепочкам, формирующим жизнь, и далее, расширяя масштаб до Вселенной в целом.
«Эволюция Вселенной и происхождение жизни» включает в себя широкий диапазон знаний — от астрономии и физики до химии и биологии. Богатый иллюстративный материал облегчает понимание как фундаментальных, так и современных научных концепций. Текст не перегружен терминами и формулами и прекрасно подходит для всех интересующихся наукой и се историей.
Эволюция Вселенной и происхождение жизни - читать онлайн бесплатно полную версию (весь текст целиком)
Интервал:
Закладка:
Таблица 23.2. Красное смещение, расстояние по времени распространения света и «расстояние сейчас».
Эти расстояния рассчитаны по модели Фридмана при постоянной Хаббла = 70 км/с/Мпк, плоском пространстве, доле материи = 0,24 и доле темной энергии = 0,76.
Как пример возьмем галактику с красным смещением z = 2. Из табл. 23.2 мы видим, что свет покинул эту галактику около 10 млрд лет назад. Мы также можем вычислить, что в настоящее время она удалена от нас примерно в 7000 раз дальше, чем галактика Андромеда (расстояние до которой 2,5 млн световых лет). В этой таблице приведены расстояние по времени распространения света и «расстояние сейчас» по значению красного смещения. За единицу расстояния принят миллиард световых лет, и использована стандартная космологическая модель, в которой возраст Вселенной составляет 14 млрд лет.
Сейчас астрономы без труда наблюдают галактики до красного смещения около 0,5, что соответствует 64 % современного возраста Вселенной. С некоторыми трудностями удается наблюдать галактики при z = 3, это соответствует 16 % возраста Вселенной, а эпоха z = 10 была, когда от 14-миллиардного возраста мира прошло всего лишь 3,5 %.
Похоже, что плоские бесконечные модели Фридмана работают хорошо. Но мы хотим завершить эту главу рассказом об одном захватывающем предположении: может ли Вселенная быть плоской, но при этом конечной и содержать конечное число галактик?
Александр Фридман писал, что «распространены совершенно превратные сведения о конечности, замкнутости, кривизне и т. п. свойствах нашего пространства, которые будто бы устанавливаются принципом относительности… Я имею в виду пресловутый вопрос о конечности Вселенной, то есть о конечности нашего физического, занятого блистающими звездами пространства. Утверждают, что, найдя постоянную положительную кривизну Вселенной, можно якобы заключить о ее конечности и прежде всего о том, что прямая во Вселенной имеет «конечную длину», что объем Вселенной является тоже конечным и т. п.».
Он хотел подчеркнуть, что хотя в общей теории относительности кривизна пространства служит определяющей величиной, измерив ее, мы еще не узнаем глобальную форму и объем пространства. Отдельным вопросом является топология пространства. Напомним, что топология — это область математики, изучающая среди прочего особенности геометрических фигур и тел, которые не изменяются при растяжении или изгибе. В этом смысле, например, бублик и рамка от картины топологически эквивалентны. Так вот, топологию пространства невозможно вывести из общей теории относительности: нет простого, взаимно однозначного соответствия между кривизной пространства и его общей формой.
В процитированной выше книге «Мир как пространство и время», опубликованной в России в 1923 году, за два года до безвременной смерти, Фридман приводит педагогический пример. Двумерная геометрия поверхности цилиндра и геометрия плоскости одинаковы: обе поверхности — двумерные евклидовы пространства (рис. 23.8). Цилиндр можно склеить из плоского куска, и с нарисованным на плоскости треугольником ничего особенного не случится, если мы склеим друг с другом края этого куска. Сумма углов треугольника останется равной двум прямым углам, и теорема Пифагора, которая работает на плоскости, сохранит свою силу и на поверхности цилиндра.
Рис. 23.8. Цилиндр можно изготовить из плоского прямоугольника. Поверхность цилиндра и плоскость обладают одинаковой внутренней евклидовой геометрией, но глобальная, то есть топологическая, структура у них совершенно разная.
Но в топологическом смысле это разные вещи: на цилиндре существуют «прямые линии конечной длины», тогда как на плоскости таких линий нет. Цилиндр имеет конечный размер в направлениях, перпендикулярных его оси, поэтому в этих направлениях он конечен и замкнут. Он бесконечен в направлении, параллельном его оси. Используя плоскость и цилиндр, Фридман приводит читателя к выводу: «Таким образом, одна метрика мира не дает нам никакой возможности решить вопрос о конечности Вселенной. Для решения этого вопроса нужны дополнительные теоретические и экспериментальные исследования».
После замечания Фридмана, сделанного в начале прошлого века о «дополнительных исследованиях», можно сказать, что до сих пор нет общей теории, связывающей топологию пространства-времени с его вещественным содержимым (математики говорят, что плоская, евклидова, геометрия может существовать у 18 топологически различных вариантов пространства!). Тем не менее можно приблизиться к решению этой проблемы путем наблюдений. Например, многочисленные изображения-«духи» одного и того же объекта могут наблюдаться на небе в топологически замкнутом пространстве конечного размера, потому что свет от яркого объекта может дойти до наблюдателя разными путями. Скажем, если лучи обогнут мир в разных направлениях, то мы можем увидеть один и тот же объект в двух диаметрально противоположных точках на небе. Но до сих пор такое не наблюдалось.
Замкнутая топология пространства должна была бы оставить свои следы и в виде «духов» фонового излучения. Первые наблюдательные свидетельства такого рода о топологии пространства обсуждал в 2003 году в Париже Жан-Пьер Люмине с коллегами. Они изучали топологическую информацию, содержащуюся в вариациях фонового излучения на предельно больших углах. Максимальным углом для вариаций обладает диполь. Но при угле в 180° невозможно получить данные, так как эффект Доплера, связанный с нашим движением относительно Вселенной (см. главу 24), тоже вызывает дипольный эффект, причем в 100 раз превышающий топологический. Максимальным наблюдаемым угловым масштабом вариаций обладает квадруполь с углом 90°. Последние данные WMAP показывают, что квадрупольные изменения составляют лишь одну седьмую от изменений, ожидаемых в бесконечном плоском пространстве. Для восьмиугольника с угловым масштабом 60° они составляют 70 % от ожидаемого в бесконечном пространстве. Для меньших угловых масштабов ослабления не наблюдалось.
Малая величина вариаций мощности на углах больше 6о° может означать, что большие пространственные масштабы отсутствуют, и Люмине предполагает, что причина этого в том, что пространство само недостаточно велико. Это можно сравнить с колебаниями закрепленной на двух концах струны: максимальная длина волны колебаний равна удвоенной длине струны. Люмине исследовал конкретную модель конечной Вселенной, пространство которой носит необычное название — додекаэдр Пуанкаре; с ним хорошо знакомы топологи. Чтобы в общих чертах представить такое пространство, нужно в первую очередь отметить, что любую обычную сферу можно полностью покрыть 12 правильными сферическими пятиугольниками, плотно прилегающими друг к другу. Каждый из них — это пятиугольная часть сферы. Обычный евклидов пентагональный додекаэдр — это фигура с 12 одинаковыми плоскими гранями (рис. 6.4), а в нашем случае грани являются частями сферической поверхности.
Читать дальшеИнтервал:
Закладка: