Александр Волков - 100 великих загадок астрономии
- Название:100 великих загадок астрономии
- Автор:
- Жанр:
- Издательство:неизвестно
- Год:неизвестен
- ISBN:нет данных
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Александр Волков - 100 великих загадок астрономии краткое содержание
С той знаменитой январской ночи 1610 года, когда Галилей навёл свой телескоп на небо и открыл спутники Юпитера, многие учёные и энтузиасты последовали его примеру и открыли немало планет и звёзд, существование которых в настоящее время не подтверждается. И задолго до Галилея необъяснимые явления в космосе ставили в тупик мыслителей и будоражили умы обывателей. Сегодня – в XXI веке, несмотря на то, что современная наука продвинулась далеко вперёд, в астрономии накопилось множество открытий и наблюдений, которые требуют для своего объяснения новых теоретических построений. Все они, на первый взгляд, кажутся чрезвычайно сложными, но, учитывая опыт прошлого, ученые не спешат отступать.
О самых волнующих загадках современной астрономии рассказывает очередная книга серии.
100 великих загадок астрономии - читать онлайн бесплатно ознакомительный отрывок
Интервал:
Закладка:
Вот пример: путешествуя по галактике, космонавт наткнулся на небольшую «червоточину». На входе в нее он оставляет своего напарника (для вящего эффекта скажем, что это его брат-близнец). Теперь, взяв на буксир другой конец «червоточины», он унесется прочь почти со световой скоростью. Через некоторое время он остановится и повернет назад, туда, где его брат ожидает окончания эксперимента. И тут выяснится, что пока наш герой «маневрировал» в космосе (это заняло совсем немного времени!), его брат изнемог от ожидания. Для него прошло, быть может, несколько десятилетий! Наш же герой ничуть даже не состарился.
Подобный мысленный эксперимент основан на «парадоксе близнецов», придуманном Эйнштейном. Согласно ему, если один из братьев остается на Земле, а другой, сев в космический корабль, уносится с огромной скоростью прочь, то для него время идет медленнее, чем для того, кто остался ждать. Благодаря «червоточине» этот парадокс к общей радости разрешается. Состарившемуся братцу достаточно потерпеть, пока его единокровный родственник не примчится назад и не привезет с собой другой конец «червоточины». Теперь, стоит юркнуть туда, можно попасть в свое прошлое. Миновав этот туннель, обретаешь давно исчезнувший мир и самого себя, только молодого, каким ты был в ту пору, когда брат пустился в путешествие.
Есть лишь одно ограничение. Отправляясь в прошлое подобным образом, можно добраться лишь до того момента, когда эту «червоточину» впервые использовали как машину времени. Проникнуть куда-нибудь дальше и стать очевидцем «времен очаковских и покоренья Крыма» или побывать в Древнем Египте – нельзя. Зато в другую сторону дорога открыта, и можно катапультироваться в будущее.
Именно релятивистский эффект позволил бы нам заглянуть в Москву даже не 2042, а 3042. Следует, например, отправиться в путь к звезде, расположенной в 500 световых годах от Земли, а затем вернуться назад. Главное, чтобы полет туда и обратно проходил со скоростью, равной примерно 99,995 % скорости света. «Когда вы вернетесь, на Земле пройдет 1000 лет, в то время как вы станете лишь на десять лет старше», – говорит один из самых известных конструкторов машин времени Джон Ричард Готт. Правда, от его теоретических озарений до практических экспериментов дистанция непомерно велика и, может быть, тоже исчисляется тысячелетиями, иронизируют оппоненты.Машина времени курта Гёделя
В последнее время австрийский математик Курт Гёдель стал по-настоящему культовой фигурой на Западе. Чем он обязан этим всплеском популярности? Прежде всего, своими прозрениями в области космологии. Более полувека назад он вывел формулу, которая сулила нам то, о чем мы и не помышляли мечтать.
…В 1949 году, готовясь отметить семидесятилетие своего друга Эйнштейна, Гёдель задумал сделать ему особый подарок (после 1940 года оба ученых жили в США по соседству). Отталкиваясь от эйнштейновских уравнений общей теории относительности, Гёдель вывел формулу, которая представляет собой самое полное решение этих сложных уравнений. Он надеялся порадовать друга математическим кунштюком, но тот, просмотрев написанное, весел не стал. Эйнштейн был обескуражен подарком и постарался его забыть. Что же рассердило юбиляра?
Австрийский математик Курт Гёдель
Во Вселенной, воздвигнутой Гёделем на фундаменте эйнштейновских уравнений, стали возможны… путешествия во времени.
Еще до этого было известно, что решения эйнштейновских уравнений во многом зависят от выбора координатной системы. Анализируя их, обычно используют сферические координаты. В таком случае эти решения удовлетворяют требованиям шаровой симметрии, что вполне разумно, – ведь и Вселенная, и составляющие ее «частицы», то бишь звезды, планеты, атомы, имеют форму шара. Подобным доводам нельзя отказать в своей красоте.
Вселенная Гёделя предстала нежданно другой – худющей, долговязой, как сам математик, напоминавший средневекового мистика и аскета. Она приняла форму цилиндра, а потому Гёдель прибег к помощи цилиндрических координат, описывая мироздание.
Его Вселенная вообще мало походила на прежние представления о ней. Так, Гёдель предположил, что вращаются не только все объекты в ней – эти звезды, планеты, атомы, – но и сама Вселенная. Она словно Океан, внезапно пришедший в движение. И ее вещество, и энергия в этом непрестанном коловращении бурлят, вздымаются, взвихряются. Вселенная живет – словно единый организм, ворочающийся с бока на бок, словно животное, весь свой век, свою вечность не ведающее покоя.
Что же получается? Поведение всех элементов мироздания в теории Эйнштейна – в нашем пространстве-времени – описывается четырехмерными линиями, своего рода «долготой-широтой» любых физических тел, пребывающих одновременно и в пространстве, и во времени. По Гёделю, из-за вращения Вселенной эти четырехмерные линии – «мировые линии» – искривляются так сильно, что свиваются в петлю. Если предположить, что мы попробуем совершить путешествие вдоль подобной замкнутой линии, то в конце концов встретим… самих себя, вернувшись в свое прошлое. Это – не фантастика, это – точный математический расчет. Путешествия в даль минувших времен возможны вдоль этих линий – «замкнутых кривых времени», как их принято называть.
Эти кривые – словно мосты, проложенные над бурными водами времени. Легко ли было бы пересечь бурные воды реки, если бы не мост, возведенный над ней? Так и из вод времени есть единственный выход, одна возможность их миновать – эта линия, этот «мост», свернувшийся в прошлое.
Тысячи дорог ведут нас из нашего сегодня в день завтрашний, тысячи возможностей, готовых осуществиться, – и лишь одна дорога назад. Как ее найти? Гёдель, как Бог, возвещает действительное: «Если мы, отправляясь в путь на космическом корабле, совершим полет по кругу, описав кривую достаточно большого радиуса, то мы можем вернуться в любой уголок прошлого».
Но что значит «достаточно большого радиуса»? Исходя из известных тогда параметров Вселенной, Гёдель рассчитал скорость ее вращения. По его космической математике, Вселенная совершала один оборот за 70 миллионов лет. Длина же той траектории, проскользнув вдоль которой, можно переменить «полюса времени» и обрести Будущее в Прошлом, составляла 100 миллиардов световых лет. И хоть число это – в силу его непомерности – ничего, кроме улыбки, у читателя не вызовет, оно имеет вполне определенную величину, оно не бесконечно велико. Для вечности же все эти миллиарды и миллионы, что для нас – мерное дыхание секунд: частый такт, отбивающий ход времен, смену времен. И вот уже Прошлое в паре с Будущим, словно на паркете дансинга, переступают, меняются местами, непрерывно меняются местами. Как с этим поспоришь? Ведь математические истины – все эти «дважды два», «пять плюс пять», «скорость вращения», «сто миллиардов» – не формальная уловка, они существуют в действительности, полагал реалист, взращенный мистической Веной.
Читать дальшеИнтервал:
Закладка: