С. Капица - Жизнь науки
- Название:Жизнь науки
- Автор:
- Жанр:
- Издательство:Наука
- Год:1973
- Город:Москва
- ISBN:нет данных
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
С. Капица - Жизнь науки краткое содержание
Собрание предисловий и введений к основополагающим трудам раскрывает путь развития науки от Коперника и Везалия до наших дней. Каждому из 95 вступлений предпослана краткая биография и портрет. Отобранные историей, больше чем волей составителя, вступления дают уникальную и вдохновляющую картину возникновения и развития научного метода, созданного его творцами. Предисловие обычно пишется после окончания работы, того труда, благодаря которому впоследствии имя автора приобрело бессмертие. Автор пишет для широкого круга читателей, будучи в то же время ограничен общими требованиями формы и объема. Это приводит к удивительной однородности всего материала как документов истории науки, раскрывающих мотивы и метод работы великих ученых. Многие из вступлений, ясно и кратко написанные, следует рассматривать как высшие образцы научной прозы, объединяющие области образно-художественного и точного мышления. Содержание сборника дает новый подход к сравнительному анализу истории знаний. Научный работник, студент, учитель найдут в этом сборнике интересный и поучительный материал, занимательный и в то же время доступный самому широкому кругу читателей.
Жизнь науки - читать онлайн бесплатно ознакомительный отрывок
Интервал:
Закладка:
При исследовании математических проблем специализация играет, как я полагаю, ещё более важную роль, чем обобщение. Возможно, что в большинстве случаев, когда мы напрасно ищем ответа на вопрос, причина нашей неудачи заключается в том, что еще не разрешены или не полностью решены более простые и легкие проблемы, чем данная. Тогда все дело заключается в том, чтобы найти эти более легкие проблемы и осуществить их решение наиболее совершенными средствами, при помощи понятий, поддающихся обобщению. Это правило является одним из самых мощных рычагов для преодоления математических трудностей, и мне кажется, что в большинстве случаев этот рычаг и приводят в действие, подчас бессознательно.
Вместе с тем бывает и так, что мы добиваемся ответа при недостаточных предпосылках, пли идя в неправильном направлении, и вследствие этого пе достигаем цели. Тогда возникает задача доказать неразрешимость данной проблемы при принятых предпосылках и выбранном направлении. Такие доказательства невозможности проводились еще старыми математиками, например, когда они обнаруживали, что отношение гипотенузы равнобедренного прямоугольного треугольника к его катету есть иррациональное число. В новейшей математике доказательства невозможности решений определенных проблем играют выдающуюся роль; там мы констатируем, что такие старые и трудные проблемы, как доказательство аксиомы о параллельных, как квадратура круга или решение уравнения пятой степени в радикалах, получили все же строгое, вполне удовлетворяющее нас решение, хотя и в другом направлении, чем то, которое сначала предполагалось.
Этот удивительный факт наряду с другими философскими основаниями создает у нас уверенность, которую разделяет, несомненно, каждый математик, но которую до сих пор никто не подтвердил доказательством,— уверенность в том, что каждая определенная математическая проблема непременно должна быть доступна строгому решению или в том смысле, что удается получить ответ на поставленный вопрос, или же в том смысле, что будет установлена невозможность ее решения и вместе с тем доказана неизбежность неудачи всех попыток ее решить. Представим себе какую-либо нерешенную проблему, скажем, вопрос об иррациональности константы С Эйлера — Маскерони или вопрос о существовании бесконечного числа простых чисел вида 2 л+ 1. Как ни недоступными представляются нам эти проблемы и как ни беспомощно мы стопм сейчас перед ними, мы имеем все же твердое убеждение, что их решение с помощью конечного числа логических заключений все же должно удасться.
Является ли эта аксиома разрешимости каждой данной проблемы характерной особенностью только математического мышления или, быть может, имеет место общий, о,тносящийся к внутренней сущности нашего разума закон, по которому все вопросы, которые он ставит, способны быть им разрешимы? Встречаются ведь в других областях знания старые проблемы, которые были самым удовлетворительным образом и к величайшей пользе науки разрешены путем доказательства невозможности их решения. Я вспоминаю проблему perpetuum mobile (вечный двигатель) [79] . После напрасных попыток конструирования вечного двигателя стали, наоборот, исследовать соотношения, которые должны существовать между силами природы, в предположении, что perpetuum mobile невозможен. И эта постановка обратной задачи привела к открытию закона сохранения энергии, из которой и вытекает невозможность perpetuum mobile в первоначальном понимании его смысла.
Это убеждение в разрешимости каждой математической проблемы является для нас большим подспорьем в работе; мы слышим внутри себя постоянный призыв: вот проблема , ищи решение . Ты можешь найти его с помощью чистого мышления; ибо в математике не существует Igno - rabimus!
Неизмеримо множество проблем в математике, и как только одна проблема решена, на ее место всплывают бесчисленные новые проблемы. Разрешите мне в дальнейшем, как бы на пробу, назвать несколько определенных проблем из различных математических дисциплин, проблем, исследование которых может значительно стимулировать дальнейшее развитие науки.
Обратимся к основам анализа и геометрии. Наиболее значительными ii важными событиями последнего столетия в этой области являются, как мне кажется, арифметическое овладение понятием континуума в работах Коши, Больцано, Кантора и открытие неэвклидовой геометрии Гауссом, Бойяи и Лобачевским. Я привлекаю поэтому Ваше внимание к некоторым проблемам, принадлежащим к этим областям.
Геометрия,— так же как и арифметика,— требует для своего построения только немногих простых основных положений. Эти основные положения называются аксиомами геометрии. Установление аксиом геометрии и исследование их взаимоотношений — это задача, которая со времен Эвклида являлась темой многочисленных прекрасных произведений математической литературы. Задача эта сводится к логическому анализу нашего пространственного представления.
Настоящее исследование представляет собой новую попытку установить для геометрии полную и возможно более простую систему аксиом и вынести из этих аксиом важнейшие геометрические теоремы так, чтобы при этом стало совершенно ясно значение как различных групп аксиом, так и следствий, получающихся из отдельных аксиом.
***
Настоящая работа представляет собой критическое исследование основ геометрии; в этом исследовании нами руководил принцип разбирать каждый представившийся вопрос так, чтобы при этом исследовать, можно ли получить на него ответ на предначертанном заранее пути при помощи определенных ограниченных вспомогательных средств. Этот принцип содержит, как мне кажется, общее и естественное положение, когда мы при наших математических исследованиях встречаемся с некоторой проблемой или предполагаем справедливость некоторой теоремы, то наше стремление к познанию бывает удовлетворено лишь после того, как нам удастся полностью решить проблему и строго доказать теорему, или после того, как нами полностью осознается невозможность такого реше-пия (или доказательства) и тем самым становится очевидным, что все такие попытки неминуемо обречены на неудачу.
Поэтому-то в новой математике вопрос о невозможности определенных решений или неразрешимости некоторых задач играет выдающуюся роль, и стремление ответить на подобного рода вопрос часто служило толчком для открытия новых и плодотворных областей исследования. Напомним только о доказательстве Абеля невозможности решения уравнения пятой степени в радикалах, далее, о выяснении недоказуемости аксиомы о параллельных и, наконец, о теоремах Эрмита и Линдеман-на — о невозможности построить числа е я и алгебраическим путем.
Читать дальшеИнтервал:
Закладка: