С. Капица - Жизнь науки

Тут можно читать онлайн С. Капица - Жизнь науки - бесплатно ознакомительный отрывок. Жанр: Прочая научная литература, издательство Наука, год 1973. Здесь Вы можете читать ознакомительный отрывок из книги онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.

С. Капица - Жизнь науки краткое содержание

Жизнь науки - описание и краткое содержание, автор С. Капица, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru

Собрание предисловий и введений к основополагающим трудам раскрывает путь развития науки от Коперника и Везалия до наших дней. Каждому из 95 вступлений предпослана краткая биография и портрет. Отобранные историей, больше чем волей составителя, вступления дают уникальную и вдохновляющую картину возникновения и развития научного метода, созданного его творцами. Предисловие обычно пишется после окончания работы, того труда, благодаря которому впоследствии имя автора приобрело бессмертие. Автор пишет для широкого круга читателей, будучи в то же время ограничен общими требованиями формы и объема. Это приводит к удивительной однородности всего материала как документов истории науки, раскрывающих мотивы и метод работы великих ученых. Многие из вступлений, ясно и кратко написанные, следует рассматривать как высшие образцы научной прозы, объединяющие области образно-художественного и точного мышления. Содержание сборника дает новый подход к сравнительному анализу истории знаний. Научный работник, студент, учитель найдут в этом сборнике интересный и поучительный материал, занимательный и в то же время доступный самому широкому кругу читателей.

Жизнь науки - читать онлайн бесплатно ознакомительный отрывок

Жизнь науки - читать книгу онлайн бесплатно (ознакомительный отрывок), автор С. Капица
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Нужно заметить, что неопределенность при определении положения касательной плоскости к некоторому контуру не совсем того порядка, как неопределенность, с которой мы встретились бы, если бы вздумали провести, например, касательную в какой-либо точке береговой линии Бретани, пользуясь для этого картой того или другого масштаба. Сообразно с масштабом, положение касательной менялось бы, по в каждой точке можно провести только одну касательную. И это потому, что карта ость лишь условный чертеж, где уже по построению всякая линия имеет касательную. Напротив, для наших хлопьев характерно (как и для берега, если вместо того, чтобы изучать его очертания по карте, мы рассматривали бы его непосредственно с более или менее далекого расстояния) именно то, что, в каком бы то ни было масштабе, мы подозреваем в структуре такие детали, которые абсолютно не позволяют придать дааса-тельпой какого-либо определенного положения.

Равным образом мы остаемся в области реальности, доступной опыту, когда, приближая глаз к микроскопу, видим броуновское движение, волнующее каждую частицу эмульсин, плавающую в жидкости. Для того чтобы провести касательную к ее траектории, мы должны были бы найти, хотя приблизительно, предельное положение прямой, соединяющей два положения частицы, взятые в два момента времени, очень близкие друг к другу. Но, поскольку позволяет судить опыт, это направление меняется положительно сумасшедшим образом по мере того, как мы уменьшаем промежуток времени, разделяющий эти моменты. Таким образом, у непредубежденного наблюдателя в процессе наблюдения слагается мысль, что здесь перед ним функция, не имеющая производной, а не кривая, имеющая касательную.

Я говорил пока о контуре или о кривой, так как обыкновенно пользуются кривыми, чтобы на них выяснить понятие о непрерывности. Не было бы логически равноценным, а с физической точки зрения даже и более общим, рассматривать изменение от точки к точке какого-нибудь другого свойства материи, например плотности или цвета. И в этом случае мы встретились бы с совершенно подобными сложностями.

По классическому представлению, мы можем разложить всякий предмет на столь мелкие части, что они будут практически однородными. Другими словами, считается, что по мере постепенного сжатия контура, различия в свойствах материи внутри этого контура делаются все менее и менее резкими.

Однако, если такое представление и не опровергается опытом, то все же можно сказать, оно крайне редко подтверждается наблюдаемыми фактами. Наш глаз тщетно будет искать практически однородную область, хотя бы и чрезвычайно малую, на поверхности руки, письменного стола, деревьев или почвы. И если бы нам показалось возможным ограничить достаточно однородную площадку, положим, на поверхности древесного ствола, то достаточно подойти поближе, чтобы разглядеть на коре дерева предполагавшиеся детали и заподозрить существование еще новых более мелких деталей. Если наш глаз не в силах уже различить их, мы прибегаем к лупе или микроскопу; и тогда, наблюдая при возрастающем увеличении выбранные нами участки, мы открываем на них все новые и новые детали, и, наконец, дойдя до предела возможного увеличения, мы видим изображение дифференцированным значительно больше, чем то, которое мы наблюдали невооруженным глазом. Живая клетка, например, совсем не однородна: в ней можно различить сложную структуру, состоящую из нитей и зерен, плавающих в неоднородной плазме; глаз угадывает там еще какие-то особенности, которые он бессилен воспринять более определенно. Таким образом, кусочек материи, который, как мы рассчитывали сначала, мог бы оказаться однородным, на самом деле оказывается «бесконечно губчатого» строения, и для нас не остается никакой надежды отыскать в конце концов «однородный» или, по крайней мере, такой кусочек вещества , свойства которого изменялись бы от точки к точке в правильной последовательности .

Не нужно думать, что только живая материя представляется нам бесконечно губчатой, бесконечно дифференцированной. Обуглив только что изученный нами кусочек коры, мы получаем кусочек древесного угля с бесчисленными порами. Не легко разложить на малые однородные части почвы, горные породы. И, пожалуй, единственными образчиками вещества, непрерывного в своих свойствах, окажутся кристаллы вроде алмаза, жидкости вроде воды и газы. Таким образом, понятие непрерывности составлено нами в результате совершенно произвольного подбора и сопоставления данных опыта.

Впрочем, следует помнить, что, несмотря на то, что внимательное исследование заставляет нас вообще считать строение изучаемых объектов в высшей степени неправильным, мы можем с пользой для дела приблизительно представить свойства их при помощи непрерывных функций. Хотя дерево бесконечно губчато, но мы говорим о поверхности бревна, которую нужно обстругать, или об объеме воды, вытесненном обрубком, как о чем-то непрерывном. Можно будет иной раз сказать, с некоторой дозой преувеличения, что правильная непрерывность может служить изображением явлений, подобно тому как листок олова, которым мы вздумали бы обернуть губку, воспроизводил бы ее контуры в общих чертах, не следуя за тонкими и сложными ее извивами.

жащую в данный момент массу т/г. Частное m/v есть средняя плотность внутри этой сферы, а предел этого отношения называют истинной плотностью в данной точке. Это равносильно утверждению, что в данный момент средняя плотность внутри малой сферы постоянна, если только* мы не выходили из известных пределов объема. Средняя плотность может оказаться несколько различной, если один раз мы будем брать сферу в 1000 куб. метров, а в другой раз в 1 куб. см; но в случае изменения размеров сферы от 1 куб. см до 1 куб. мм она не изменится более чем на 1/1000 000. Но в этих пределах рассматриваемых объемов будут иметь место неправильные изменения плотности, порядка одной миллиардной (причем уклонения от среднего значения весьма завпсят от движений, существующих в нашем веществе).

Будем, далее, уменьшать объем. Колебания плотности не только не* выравняются, но сделаются еще значительнее и еще беспорядочнее. Возьмем размеры сферы в 1/10 куб. микрона (в таких малых объемах весьма сильно дает себя чувствовать броуновское движение)колебания плотности могут достичь (для воздуха) размера 1/1000 средней величию* плотности; если размеры сферы сделаются в 1/100 куб. микрона, то колебания дойдут до значения в 1/5 средней плотностп.

Сделаем еще шаг: радаус сферы принимает размеры радиуса молекулы. Тогда, вообще говоря (в случае газа), наша сфера окажется в меяс-молекулярном пространстве, а, стало быть, средняя плотность сделается, равной нулю: истинная плотность в данной точке также равняется нулю. Но может оказаться (с вероятностью приблизительно 1:1000), что точку мы выбрали как раз внутри молекулы; тогда средняя плотность окажете» сравнимой с плотностью воды, то есть окажется в 1000 раз большей, чем* то, что мы поверхностно считали истинной плотностью газа.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


С. Капица читать все книги автора по порядку

С. Капица - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




Жизнь науки отзывы


Отзывы читателей о книге Жизнь науки, автор: С. Капица. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x