С. Капица - Жизнь науки
- Название:Жизнь науки
- Автор:
- Жанр:
- Издательство:Наука
- Год:1973
- Город:Москва
- ISBN:нет данных
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
С. Капица - Жизнь науки краткое содержание
Собрание предисловий и введений к основополагающим трудам раскрывает путь развития науки от Коперника и Везалия до наших дней. Каждому из 95 вступлений предпослана краткая биография и портрет. Отобранные историей, больше чем волей составителя, вступления дают уникальную и вдохновляющую картину возникновения и развития научного метода, созданного его творцами. Предисловие обычно пишется после окончания работы, того труда, благодаря которому впоследствии имя автора приобрело бессмертие. Автор пишет для широкого круга читателей, будучи в то же время ограничен общими требованиями формы и объема. Это приводит к удивительной однородности всего материала как документов истории науки, раскрывающих мотивы и метод работы великих ученых. Многие из вступлений, ясно и кратко написанные, следует рассматривать как высшие образцы научной прозы, объединяющие области образно-художественного и точного мышления. Содержание сборника дает новый подход к сравнительному анализу истории знаний. Научный работник, студент, учитель найдут в этом сборнике интересный и поучительный материал, занимательный и в то же время доступный самому широкому кругу читателей.
Жизнь науки - читать онлайн бесплатно ознакомительный отрывок
Интервал:
Закладка:
Прп перепечатке оригинальных работ без каких-либо изменений вовсе не имелось в виду, что уже удалось создать окончательную физическую теорию, которая допускает и требует дальнейшего развития, но не может быть подвергнута изменению в своих основных представлениях. Наоборот, простое воспроизведение оказалось предпочтительным потому, что прп настоящем положении невозможно дать ни лучшего, ни, тем более, окончательного изложения теории.
Наряду с новой сквозной нумерацией страниц сохранена также (за исключением краткой заметки в «Naturwissenschaften») нумерация страниц оригинальных статей, облегчающая нахождение ссылок. В предметном указателе страницы указаны по новой, сквозной нумерации. [В данном издании указания на страницы опущены.— Ред.].
Цюрих, ноябрь 1926 г.
Гамильтонова оптико-механическая аналогия есть аналогия с геометрической оптикой, поскольку траектория изображающей точки в конфигурационном пространстве соответствует в оптике лучу света , который определен лишь в рамках геометрической оптики. Представления волновой оптики ведут к отказу от понятия траектории , если размеры траектории невелики по сравнению с длиной волны. Только тогда, когда это так, остается приближенно применимым понятие траектории и с ним вся классическая механика. Напротив, для «микромеханических» движений основные уравнения механики неприменимы в той же степени, что и геометрическая оптика для решения дифракционных задач, и вместо основных уравнений механики следует, как и в оптике, пользоваться волновым уравнением в конфигурационном пространстве. Это уравнение сформулировано сначала для чисто периодических, синусоидальных во времени колебаний; его можно вывести также из «вариационного принципа Гамильтона». Оно содержит параметр Е , соответствующий при переходе к макроскопическим задачам механической энергии и для каждого синусоидального во времени колебания равный частоте, умноженной на постоянную Планка А. Решения, которые вместе со своими производными во всем конфигурационном пространстве одпозпачны, непрерывны и ограниченны (конечны), могут быть у волнового, или колебательного, уравнения в общем случае только при некоторых избранных значениях параметра Е — при собственных значениях . Они образуют «спектр собственных значений», который часто наряду с дискретными точками (« линейчатый спектр») содержит также непрерывные части (« сплошной спектр», в большинстве формул не учитываемый). Собственные значения либо совпадают с энергетическими уровнями (спектроскопическими «термами», умножен-нымп на h) прежней квантовой теории, либо отличаются от них в согласии с опытом (невозмущениое кеплерово движение, гармонический осциллятор, жесткий ротатор, нежесткий ротатор, эффект Штарка). Указанные отличия состоят в появлении нецелых квантовых чисел (а именно, половпн печетных чисел) у осциллятора и ротатора и в отсутствие «избыточных» уровней в задаче Кеплера (а именно, уровней с исчезающим азимутальным, или экваториальным, квантовым числом). В этом пункте имеется согласие с квантовой механикой Гейзенберга, что допускает общее обоснование квантовой и волновой механики.
Для вычисления собственных значений и соответствующих решений волнового уравнения (« собственных функций ») в более сложных случаях развита теория возмущений , позволяющая более трудную задачу свести с помощью квадратур к «близкой» задаче, являющейся более простой. «Вырождение» соответствует наличию кратных собственных значепий. С физической точки зрения наиболее важен случай, когда, как, например, при эффектах Зеемапа и Штарка, кратное собственное значение под дей-ствпем возмущающих сил расщепляется (общая теория, эффект Штарка).
Чтобы понять, как малая механическая система может испускать электромагнитные волны с частотой, равной разности термов (разность двух собственных значений, деленная на fe), и как получить теоретические результаты об интенсивности и поляризации электромагнитных волн, необходимо приписать функции в конфигурационном пространстве определенный физический, а именно электромагниты#, смысл; до сих пор она имела чисто формальный смысл, удовлетворяя указанному выше волновому уравнению. Физический смысл функции выясняется для общего случая системы с произвольным числом степеней свободы лишь в конце серии работ (предварительная попытка для задачи об одном электроне оказалась несовершенной). Определенное распределение \|) в конфигурационном пространстве толкуется как непрерывное распределение электрического заряда (и плотности электрического тока) в реальном пространстве. Если из этого распределения заряда вычислить обычным путем составляющую электрического момента всей системы в каком-нибудь направлении, то эта последняя оказывается суммой отдельных слагаемых , получающихся как парные комбинации каждых двух собственных колебаний. Каждое такое слагаемое колеблется во времени синусоидально с частотой, равной разности соответствующих собственных частот (однако
там нужно заменить ф на ф, в результате чего вычисления несущественно изменяются, точнее упрощаются). Если длина волны электромагнитных волн, соответствующая разностной частоте, велика по сравнению с размерами объема, в котором сосредоточено все распределение заряда, то по законам обычной электродинамики амплитуда парциального момента (или, точнее говоря, квадрат амплитуды, умноженной на четвертую степень частоты) есть мера интенсивности света, излученного с данной частотой и данной поляризацией. Электродинамическая гипотеза о я)) и последующее чисто классическое вычисление излучения базируются на опыте, поскольку они дают обычные правила отбора и поляризации для осцилля тора, ротатора и атома водорода; кроме того, они дают для тонкого расщепления линий серии Бальмера в электрическом поле удовлетворительные отношения интенсивностей.
Если возбуждено только одно собственное колебание или собственные колебания с одной собственной частотой, то распределение заряда будет статическим ; однако при этом могут образоваться стационарные токи (магнитные атомы). Таким образом выясняется устойчивость основного состояния и отсутствие излучения в этом состоянии.
Амплитуды парциальных моментов тесно связаны с теми величинами («матричными элементами»), которые, согласно формальной теории Гейзенберга, Борна и Иордана, определяют излучение. Можно доказать далеко идущую формальную тождественность обеих теорий, согласно которой вычисленные частоты испускания и правила отбора и поляризации всегда совпадают, причем отмеченный выше успех при вычислении интенсивностей можно в равной степени отнести в актив как матричной теории, так и теории, излагаемой здесь.
Читать дальшеИнтервал:
Закладка: