Абрам Фет - Катастрофы в природе и обществе
- Название:Катастрофы в природе и обществе
- Автор:
- Жанр:
- Издательство:Сибирский хронограф
- Год:неизвестен
- ISBN:5-87550-091-3
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Абрам Фет - Катастрофы в природе и обществе краткое содержание
Катастрофы в природе и обществе - читать онлайн бесплатно полную версию (весь текст целиком)
Интервал:
Закладка:
Кроме химических превращений, функционирование организмов связано с загрязнением и очисткой водных и газовых сред. Очистка, конечно, осуществляется за счет энергии, поступающей в организм извне. Например, человек, чтобы извлечь для своего организма 0,6 кг кислорода, пропускает за сутки через свои легкие почти 30 кг воздуха, содержащие более 6 кг кислорода. Выдыхаемый воздух уже непригоден для дыхания без очистки. Кроме того, за сутки человек пропускает через свой организм 4 – 5 кг чистой воды и является потребителем воды, хотя в биохимическом смысле он воду производит: вода, прошедшая через организм, загрязняется и также не может быть использована без очистки. С другой стороны, растения с биохимической точки зрения являются потребителями воды, но для их жизнедеятельности требуется испарение огромного количества воды – причем б?льшая часть солнечной энергии используется ими не для химического синтеза, а для очистки воды. Вообще, жизнь на суше существенно связана с испарением воды из океанов – то есть с очисткой воды и переносом ее на сушу.
Таким образом, процессы массообмена в биосфере связаны не только с живыми организмами, но и с физическими процессами, главными из которых являются испарение и конденсация воды.
Все эти процессы необходимо воспроизвести и в космическом корабле, чтобы обеспечить потребности человека, особенно вдалеке от Земли. Это можно сделать с помощью самых разнообразных растений, животных и микроорганизмов; можно также использовать самые разные физико-химические технологии. Некоторые из вариантов такого обеспечения человеческих потребностей уже испытаны в специальных установках на Земле.
Полная замкнутость в таких установках – и тем более на космических кораблях – еще не достигнута. Впрочем, системы жизнеобеспечения космических кораблей становятся все более автономными: если при первых полетах в космос взятые с собой вода и кислород использовались однократно и независимо друг от друга, то теперь на орбитальной станции "Мир" используется циркуляция этих веществ, позволяющая экономить доставляемую на орбиту массу. Грузовые корабли доставляют на станцию питьевую воду, а кислород не возят: он производится из воды с помощью электролиза. После использования этой воды для питья и питания жидкие отходы жизнедеятельности человека собираются, а содержащийся в выдыхаемом воздухе водяной пар конденсируется в системе охлаждения корабля. В итоге удается собрать для вторичного использования довольно много воды – даже больше, чем было выпито, потому что вода образуется также из пищи, даже сухой пищи. Например, углеводы, как это отражено и в их названии, образуются из углекислого газа и воды, а в организме человека происходит обратный процесс, при котором, как мы видели, производится углекислый газ и так называемая метаболическая вода. В принципе, при совершенствовании технологии очистки воды доставка воды на орбиту может стать вообще ненужной.
Таким образом, каждый атом кислорода, содержащийся в привозимой с Земли воде, используется многократно: например, сначала человек может выпить воду, в состав которой входит этот атом кислорода, а через некоторое время встретиться с тем же атомом, вдохнув его из атмосферы корабля; в человеческом организме он снова перейдет в воду. Пожалуй, можно сказать, что космонавты на станции "Мир" расходуют вещество даже более экономно, чем упомянутая кенгуровая крыса, – ведь этот зверек берет кислород просто из воздуха, а космонавты изготовляют его сами. Это и понятно – ведь условия космоса гораздо суровее любой пустыни. Лишь часть атомов кислорода покидает станцию в составе молекул не используемого углекислого газа, выдыхаемого человеком и выводимого наружу.
Качество атмосферы космических аппаратов является предметом особой заботы, но пока остается не очень высоким. Оно зависит от любых летучих веществ, выделяемых человеком и оборудованием станции, а также используемыми человеком вещами и доставляемым грузом. По-видимому, лучшим способом поддержания качества атмосферы является биологический – никакие устройства не могут заменить в этом растения; мы еще встретимся с этим вопросом. Но, конечно, более высокие требования к качеству потребляемого человеком воздуха приводит к возрастанию размеров и веса систем регенерации, в том числе и биологических.
Оптимальная стратегия космического полета и оптимальная конфигурация системы жизнеобеспечения экипажа зависят, прежде всего, от длительности миссии. При небольшом сроке выгодно брать как можно более легкую систему жизнеобеспечения, даже если придется увеличить запасы: ведь в этом случае запасы все равно будут невелики. При длительных миссиях, где на первый план выступает масса запасов, следует использовать системы жизнеобеспечения, позволяющие уменьшить расход запасов, – даже с большой стартовой массой оборудования. Минимизация массы представляет для космических миссий не только техническую цель: лишний вес повышает нагрузку на двигатели и, тем самым, вероятность катастрофы. При большой длительности оптимальны системы жизнеобеспечения с малой массой запасов – высокозамкнутые системы. Если бы конфигурация системы жизнеобеспечения не менялась с ростом длительности миссии, то масса системы росла бы с увеличением срока линейно – пропорционально росту запасов. Но в действительности при увеличении срока миссии оптимальная конфигурации несколько раз меняется – пока, наконец, оптимальным не становится вариант, наиболее замкнутый по обмену масс.
Разумеется, полностью замкнутая система жизнеобеспечения может применяться и при коротких сроках, но в таких случаях она не оптимальна и проигрывает замкнутым системам по массе, а значит и по надежности. Корабль Гагарина незачем было снабжать высокозамкнутой системой жизнеобеспечения, потому что системы этого корабля были предназначены для полета в несколько дней. Но при попытке использовать такую систему в полете к Марсу пришлось бы брать огромные запасы; к тому же, через некоторое время эта система вообще перестала бы работать от недостатка сменных деталей. В таком случае гораздо лучшей оказалась бы система с более высокой замкнутостью. Исследования этого вопроса кратко резюмируются рисунком 2, где показана зависимость стартовой массы М (то есть массы систем переработки и обслуживания вместе с запасами) от срока миссии t для трех вариантов системы жизнеобеспечения.
Рис.2
В варианте a масса оборудования М наименьшая, но в этом варианте система не замкнута, а потому необходимые запасы больше, чем в варианте b. В варианте b стартовая масса больше, но это оборудование позволяет повысить замкнутость и уменьшить необходимые запасы продуктов. Наконец, в варианте с имеется дополнительное оборудование, достаточное для достижения полной замкнутости: в этом варианте вообще не требуется запасов продуктов; кроме того, предполагается, что вместо использования запасных частей производится ремонт, так что стартовая масса вообще не зависит от дальности полета. На рисунке 2 показан случай, когда при малых сроках полета, до точки пересечения 1 графиков a и b, вариант а (с меньшей замкнутостью) имеет меньшую массу и в этом смысле лучше. Между точками 1 и 2 наилучшим оказывается вариант b (со средней замкнутостью). Наконец, при больших сроках, после точки 2, предпочтителен вариант с (с полной замкнутостью).
Читать дальшеИнтервал:
Закладка: