Шинтан Яу - Теория струн и скрытые измерения Вселенной

Тут можно читать онлайн Шинтан Яу - Теория струн и скрытые измерения Вселенной - бесплатно полную версию книги (целиком) без сокращений. Жанр: Прочая научная литература, издательство Питер, год 2012. Здесь Вы можете читать полную версию (весь текст) онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.

Шинтан Яу - Теория струн и скрытые измерения Вселенной краткое содержание

Теория струн и скрытые измерения Вселенной - описание и краткое содержание, автор Шинтан Яу, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru

Революционная теория струн утверждает, что мы живем в десятимерной Вселенной, но только четыре из этих измерений доступны человеческому восприятию. Если верить современным ученым, остальные шесть измерений свернуты в удивительную структуру, известную как многообразие Калаби-Яу. Легендарный математик Шинтан Яу, один из первооткрывателей этих поразительных пространств, утверждает, что геометрия не только является основой теории струн, но и лежит в самой природе нашей Вселенной.

Читая эту книгу, вы вместе с авторами повторите захватывающий путь научного открытия: от безумной идеи до завершенной теории. Вас ждет увлекательное исследование, удивительное путешествие в скрытые измерения, определяющие то, что мы называем Вселенной, как в большом, так и в малом масштабе.

Теория струн и скрытые измерения Вселенной - читать онлайн бесплатно полную версию (весь текст целиком)

Теория струн и скрытые измерения Вселенной - читать книгу онлайн бесплатно, автор Шинтан Яу
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Усилия Тая, Полчински и других, ловко адресованные возражениям, которые Виттен выдвинул два десятилетия назад, возродили интерес к космическим струнам. Благодаря постулированной плотности, космические струны должны оказывать заметное гравитационное влияние на свое окружение и таким образом обнаруживать себя.

Например, если струна пробегает между нашей и другой галактикой, то свет от этой галактики будет огибать струну симметрично, создавая два одинаковых изображения, близко расположенных друг к другу на небе. «Обычно при гравитационном линзировании вы ожидаете увидеть три изображения», — объясняет Александр Виленкин, теоретик космических струн из Университета Тафта. [226] Dennis Overbye, “One Cosmic Question, Too Many Answers,” New York Times, September 2, 2003. Некоторое количество света пройдет прямо через линзирующую галактику, а остальные лучи будут огибать ее с обеих сторон. Но свет не может пройти через струну, потому что диаметр струны намного меньше, чем длина волны света; таким образом, струны, в отличие от галактик, будут давать только два изображения, а не три.

Надежда замаячила в 2003 году, когда русско-итальянская группа во главе с Михаилом Сажиным из Московского государственного университета объявила, что они получили двойное изображение галактики в созвездии Ворона. Изображения находились на одинаковом расстоянии, имели одинаковое красное смещение и были спектрально идентичными с точностью до 99,96 %. Либо это были две чрезвычайно похожие галактики, случайно оказавшиеся рядом, либо первый случай наблюдения гравитационной линзы, созданной космической струной. В 2008 году более подробный анализ, основанный на данных космического телескопа Хаббла, который дает гораздо более четкую картину, чем наземный телескоп, использовавшийся Сажиным и его коллегами, показал, что представлявшаяся первоначально линзированной галактика на самом деле представляет собой две разные галактики; тем самым эффект космической струны был исключен.

Аналогичный подход, называемый микролинзированием, основан на допущении, что петля, образованная в результате разрыва космической струны, может создавать потенциально обнаружимые гравитационные линзы возле отдельных звезд. Хотя инструментально наблюдать раздвоенную звезду не представляется возможным, можно попытаться поискать звезду, которая будет периодически удваивать свою яркость, оставаясь неизменной по цвету и температуре, что может свидетельствовать о наличии петли космической струны, осциллирующей на переднем плане. В зависимости от местоположения, скорости движения, натяжения и конкретной колебательной моды, петля будет давать двойное изображение в одних случаях и не давать в других — яркость звезды может меняться на протяжении секунд, часов или месяцев. Такое свидетельство может быть обнаружено телескопом Gaia Satellite, запуск которого намечен на 2012 год и в задачу которого входит наблюдение за миллиардами звезд Галактики и ближайших окрестностей. Сейчас в Чили строят Большой обзорный телескоп (Large Synoptic Survey Telescope, LSST), который также может зафиксировать аналогичное явление. «Прямое астрономическое обнаружение суперструнных реликтов входит в задачу экспериментальной проверки некоторых базовых положений теории струн», — заявляет корнеллский астроном Дэвид Чернофф, член совместного проекта LSST. [227] Andrei Linde (Stanford University), interview with author, December 27, 2007.

Между тем исследователи продолжают искать другие средства обнаружения космических струн. Например, теоретики полагают, что космические струны помимо петель могли образовать изломы и перегибы, излучая гравитационные волны по мере того, как эти нерегулярности упорядочиваются или разрушаются.

Гравитационные волны определенной частоты могут быть обнаружены с помощью космической антенны, использующей принцип лазерного интерферометра (Laser Interferometer Space Antenna, LISA) и проектируемой для орбитальной обсерватории, которая разрабатывается сейчас для НАСА.

Измерения будут проводиться при помощи трех космических аппаратов, расположенных в вершинах равностороннего треугольника. Две стороны этого треугольника длиной 5 миллионов километров будут образовывать плечи гигантского интерферометра Майкельсона. Когда гравитационная волна искажает структуру пространства-времени между двумя космическими аппаратами, появляется возможность измерить относительные изменения длины плеч интерферометра по сдвигу фазы лазерного луча, несмотря на малость этого эффекта. Виленкин и Тибо Дамур из французского Института высших научных исследований (IHES) предположили, что точные измерения этих волн могли бы выявить присутствие космических струн. «Гравитационные волны, излучаемые космическими струнами, обладают специфической формой, которая сильно отличается от волн, возникающих при столкновениях черных дыр или волн, испускаемых другими источниками, — объясняет Тай. — Сигнал должен начинаться с нуля и затем быстро увеличиваться и так же быстро уменьшаться. Под “формой волны” мы понимаем характер увеличения и уменьшения сигнала, причем описываемый характер присущ только космическим струнам». [228] Giddings, interview with author, October 17, 2007.

Другой подход основан на поиске искажений в КМФ, вызванных струнами. Исследование, проведенное в 2008 году Марком Хайндмаршем из Университета Сассекса, показало, что космические струны могут быть ответственными за комковатое распределение вещества, наблюдаемое с помощью Зонда Вилкинсона, предназначенного для исследования анизотропии микроволнового фона.

Это явление комковатости известно под названием не-гауссовость . Несмотря на то что данные, полученные командой Хайндмарша, предполагают наличие космических струн, многие ученые отнеслись к ним скептически, рассматривая наблюдающуюся корреляцию как простое совпадение. Этот вопрос необходимо прояснить, выполнив более точные измерения КМФ. Исследование потенциально не-гауссова распределения вещества во Вселенной является фактически одной из главных задач спутника «Планк», запущенного Европейским космическим агентством в 2009 году.

«Космические струны могут существовать, а могут и нет», — говорит Виленкин. Но поиск этих объектов идет полным ходом, и если они существуют, «их обнаружение представляется вполне реальным в ближайшие несколько десятилетий». [229] Shamit Kachru (Stanford University), interview with author, September 18, 2007.

В некоторых моделях струнной инфляции экспоненциальный рост объема пространства происходит в области многообразия Калаби-Яу, которая называется искривленной горловиной . В абстрактной области струнной космологии искривленные горловины считаются объектами с фундаментальными и родовыми характеристиками, «которые возникают естественным образом из шестимерного пространства Калаби-Яу», — говорит Игорь Клебанов из Принстона. [230] Linde, interview with author, December 27, 2007. Несмотря на то что это не гарантирует наличия инфляции в таких областях, предполагается, что геометрический каркас искривленных горловин поможет нам понять инфляцию и разгадать другие тайны. Для теоретиков здесь открываются большие возможности.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Шинтан Яу читать все книги автора по порядку

Шинтан Яу - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




Теория струн и скрытые измерения Вселенной отзывы


Отзывы читателей о книге Теория струн и скрытые измерения Вселенной, автор: Шинтан Яу. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x