Шинтан Яу - Теория струн и скрытые измерения Вселенной
- Название:Теория струн и скрытые измерения Вселенной
- Автор:
- Жанр:
- Издательство:Питер
- Год:2012
- Город:Санкт-Петербург
- ISBN:978-5-459-00938-5
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Шинтан Яу - Теория струн и скрытые измерения Вселенной краткое содержание
Революционная теория струн утверждает, что мы живем в десятимерной Вселенной, но только четыре из этих измерений доступны человеческому восприятию. Если верить современным ученым, остальные шесть измерений свернуты в удивительную структуру, известную как многообразие Калаби-Яу. Легендарный математик Шинтан Яу, один из первооткрывателей этих поразительных пространств, утверждает, что геометрия не только является основой теории струн, но и лежит в самой природе нашей Вселенной.
Читая эту книгу, вы вместе с авторами повторите захватывающий путь научного открытия: от безумной идеи до завершенной теории. Вас ждет увлекательное исследование, удивительное путешествие в скрытые измерения, определяющие то, что мы называем Вселенной, как в большом, так и в малом масштабе.
Теория струн и скрытые измерения Вселенной - читать онлайн бесплатно полную версию (весь текст целиком)
Интервал:
Закладка:
Общая теория относительности стала поразительным достижением, которое удивило, возможно, даже самого Эйнштейна, не подозревавшего, что основы физики и математики могут быть столь тесно переплетены друг с другом. Много лет спустя он сделает вывод, что «в основе принципов творения лежит математика. Поэтому я считаю в определенном смысле истинным, что чистая мысль может ухватить реальность, как мечтали древние». [23] Chen Ning Yang, “Einstein’s Impact on Theoretical Physics in the 21st Century,” AAPPS Bulletin 15 (February 2005).
Теория гравитации Эйнштейна была создана при помощи именно такого процесса чистого мышления — исключительно из математических предпосылок, без каких-либо подсказок из внешнего мира.
Используя метрический тензор Римана, Эйнштейн получил форму и другие характеристики (иными словами, геометрию) по-новому осознанного им пространственно-временного континуума. Синтез геометрии и физики, завершившийся созданием знаменитых эйнштейновских уравнений поля, продемонстрировал, что гравитацию — силу, формирующую наш мир в космических масштабах, — можно рассматривать как иллюзию, вызываемую искривлением пространства-времени. В новой теории Эйнштейна метрический тензор римановой геометрии описывает не только кривизну пространственно-временного континуума, но и гравитационное поле. Массивное тело, подобное Солнцу, деформирует ткань пространства-времени точно так же, как под толстяком прогибается сетка батута. И подобно тому, как маленький шарик, брошенный на батут, будет двигаться по спирали вокруг тяжелого человека и, в конце концов, скатится ему под ноги, геометрия деформированного пространства-времени заставляет Землю двигаться по орбите вокруг Солнца. Иными словами, гравитация — это геометрия. Физик Джон Уилер однажды пояснил нарисованную Эйнштейном картину гравитации следующим образом: «Материя говорит пространству, как ему искривляться; пространство говорит материи, как ей двигаться». [24] Greene, The Elegant Universe , p. 72.
Вот еще один пример, помогающий понять эту точку зрения: представим себе, что два человека начинают движение с одной и той же скоростью из разных точек на экваторе и движутся в направлении Северного полюса вдоль меридианов. С течением времени они становятся все ближе друг к другу. Возможно, они полагают, что находятся под действием некой невидимой силы, постепенно сближающей их. Но с другой стороны, предполагаемая сила — на самом деле всего лишь иллюзия, вызванная геометрией Земли, и в действительности никакой силы не существует; вот в двух словах суть идеи о тождественности гравитации и геометрии.
Наглядность приведенного примера произвела на меня огромное впечатление, когда я учился на первом курсе магистратуры и впервые услышал об общей теории относительности. Ни для кого не секрет, что гравитация определяет форму нашей Вселенной и является, по сути, ее главным архитектором в космических масштабах. В области же малых масштабов, изучению которой посвящена большая часть современной физики, гравитация пренебрежительно слаба по сравнению с другими взаимодействиями: электромагнитным, сильным и слабым. Но в общей схеме мироздания гравитация охватывает почти все сущее: именно она ответственна за создание структуры Вселенной, начиная от отдельных звезд и галактик вплоть до огромнейших сверхскоплений протяженностью в миллиарды световых лет. И если Эйнштейн был прав и гравитация сводится к геометрии, то геометрия также представляет собой силу, с которой необходимо считаться.
Я сидел в аудитории, пытаясь сделать выводы из услышанного, и тут меня захлестнул поток мыслей. Я интересовался кривизной начиная с колледжа и чувствовал, как в свете открытий Эйнштейна кривизна может играть ключевую роль для понимания Вселенной и что именно в эту область исследований я могу однажды внести свой собственный вклад. Дифференциальная геометрия предоставляет средства для описания движения массы в искривленном пространстве-времени, не вскрывая при этом причины этого искривления. Эйнштейн, в свою очередь, при помощи тех же средств попытался объяснить, откуда берется искривление. Форма пространства как результат действия гравитации и форма пространства как следствие его кривизны, рассматривавшиеся ранее как две разные задачи, слились в единую проблему.
Затем я задался следующим вопросом: поскольку известно, что причиной возникновения гравитации является масса, задающая кривизну пространства, что можно сказать о форме пространства, называемого вакуумом , в котором какое-либо вещество полностью отсутствует? Что определяет кривизну пространства в этом случае? Говоря иными словами, имеют ли эйнштейновские уравнения гравитационного поля какое-либо еще решение в вакууме, кроме плоского, которое нас менее всего интересует: с пространственно-временным континуумом, в котором нет ни материи, ни гравитации, ни взаимодействий и совершенно ничего не происходит? Существует ли такое «нетривиальное» пространство, в котором отсутствует материя, но существует кривизна и силы гравитации?
Тогда я был еще не в состоянии ответить на эти вопросы. Не знал я и того, что ученый по имени Эудженио Калаби рассмотрел частный случай этой же проблемы более чем за пятнадцать лет до того, впрочем, исходя из чисто математических предпосылок и не касаясь ни гравитации, ни идей Эйнштейна. Единственное, что я тогда мог сделать, — это удивиться и задать вопрос: «А что, если бы?»

Рис. 2.5.Геометр Ч. Ш. Черн (фотография Джорджа М. Бергмана)
Это был весьма неожиданный для меня вопрос по многим причинам — особенно если учесть, с чего я начинал свой жизненный путь: следуя по пути, который должен был привести меня к торговле домашней птицей, в конце концов я пришел к геометрии, общей теории относительности и теории струн.
Я родился в 1949 году в континентальном Китае, через год после моего рождения семья переехала в Гонконг. Отец был университетским профессором, имеющим весьма скромное жалованье и жену с восемью детьми, которых нужно было как-то прокормить. Несмотря на то что ему приходилось преподавать сразу в трех университетах, его заработок был столь скуден, что нам едва хватало на еду. Мы росли в бедности, без электричества и водопроводной воды; ванной нам служила ближайшая река. Однако наше богатство состояло в другом. Будучи философом, отец побуждал меня воспринимать мир с более отвлеченной точки зрения. Помню, как маленьким ребенком, подслушивая беседы, которые он вел со студентами и коллегами, я чувствовал волнение, хотя не понимал точного значения многих слов.
Читать дальшеИнтервал:
Закладка: