Шинтан Яу - Теория струн и скрытые измерения Вселенной
- Название:Теория струн и скрытые измерения Вселенной
- Автор:
- Жанр:
- Издательство:Питер
- Год:2012
- Город:Санкт-Петербург
- ISBN:978-5-459-00938-5
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Шинтан Яу - Теория струн и скрытые измерения Вселенной краткое содержание
Революционная теория струн утверждает, что мы живем в десятимерной Вселенной, но только четыре из этих измерений доступны человеческому восприятию. Если верить современным ученым, остальные шесть измерений свернуты в удивительную структуру, известную как многообразие Калаби-Яу. Легендарный математик Шинтан Яу, один из первооткрывателей этих поразительных пространств, утверждает, что геометрия не только является основой теории струн, но и лежит в самой природе нашей Вселенной.
Читая эту книгу, вы вместе с авторами повторите захватывающий путь научного открытия: от безумной идеи до завершенной теории. Вас ждет увлекательное исследование, удивительное путешествие в скрытые измерения, определяющие то, что мы называем Вселенной, как в большом, так и в малом масштабе.
Теория струн и скрытые измерения Вселенной - читать онлайн бесплатно полную версию (весь текст целиком)
Интервал:
Закладка:

Рис. 4.5.Ориентируемая (двухсторонняя) поверхность в топологии описывается при помощи ее эйлеровой характеристики, или числа Эйлера. Для многогранника, являющегося геометрическим телом с плоскими гранями и прямыми ребрами, эйлерову характеристику можно рассчитать по простой формуле. Эйлерова характеристика, которая обозначается греческой буквой χ (хи), равна числу вершин минус число ребер плюс число граней. Для прямоугольной призмы или «коробки» в этом примере число Эйлера равно двум. Для тетраэдра это число также равно двум (4-6+ 4), как и для пирамиды с квадратным основанием (5-8+5). Нет ничего удивительного в том, что эти пространства имеют одинаковые эйлеровы характеристики, поскольку они топологически эквивалентны
V=8
E=12
F=6
χ=V-E+F=2
Но что в действительности означает класс Черна? Иными словами, Для чего нужны все эти числа, которые ставятся в соответствие подмногообразиям? Как оказалось, о подмногообразиях самих по себе данные коэффициенты не сообщают ничего особо важного, но многое могут рассказать о тех многообразиях, частями которых они являются. Исследование структуры комплексных многомерных объектов путем определения количества и типов составляющих их частей является общепринятой практикой в топологии.
Представим, к примеру, что каждый житель Соединенных Штатов получил свой собственный номер. Номер, присвоенный каждому конкретному человеку, не содержит в себе совершенно никакой информации о нем или о ней. Но если взглянуть на эти номера как на единое целое, то можно много интересного узнать про более крупный «объект» — а именно Соединенные Штаты — например, про численность населения этой страны или скорость его роста.
Вот еще один пример, позволяющий наглядно представить это весьма абстрактное понятие. Как обычно, начнем рассмотрение с весьма простого объекта, а именно сферы — поверхности, имеющей одно комплексное или два вещественных измерения. Сфера имеет только один класс Черна, который в данном случае равен эйлеровой характеристике. Во второй главе, как вы помните, обсуждались некоторые особенности метеорологии и динамики морских течений на планете сферической формы. Представим теперь, что в каждой точке данной планеты с запада на восток дует ветер. Точнее, почти в каждой точке. Представить ветер, дующий в восточном направлении, на экваторе или на любой параллели, не составит никакого труда. Однако в двух точках, лежащих; на северном и южном полюсах, которые можно назвать сингулярными, ветра не будет вовсе — это неизбежное следствие сферической геометрии. Для поверхностей, обладающих подобными особыми точками, первый класс Черна не равен нулю. Иными словами, в данном случае первый класс Черна является неисчезающим.
Теперь рассмотрим бублик. Ветры на подобной поверхности могут дуть в любом направлении — по большим окружностям вокруг дырки, по малым окружностям через дырку или даже по более сложным спиральным траекториям, никогда не сталкиваясь с точкой сингулярности, в которой они должны остановиться. Можно совершить сколь угодно оборотов вокруг бублика, ни разу не натолкнувшись на какое-либо препятствие.
Рассмотрим следующий пример. Для так называемых K3 поверхностей, имеющих два комплексных или четыре вещественных измерения, первый класс Черна обращается в нуль. Более подробно K3 поверхности будут рассмотрены в шестой главе. Согласно гипотезе Калаби, именно это свойство должно позволить им иметь риччи-плоскую метрику, подобно тору. Однако в отличие от двухмерного тора, эйлерова характеристика которого равна нулю, величина χ для K3 поверхности равна 24. Дело в том, что эйлерова характеристика и первый класс Черна, совпадающие в случае одного комплексного измерения, для более высоких размерностей могут заметно отличаться.
Следующим пунктом в нашем списке является кривизна Риччи — ключевое понятие для понимания гипотезы Калаби. Кривизна Риччи является обобщением более конкретного понятия, известного как кривизна в двухмерном направлении . Для того чтобы понять, как с ней работать, представим себе простую картину: сферу и касательное к ней пространство — плоскость, касающуюся сферы в точке северного полюса. Эта плоскость, перпендикулярная прямой, соединяющей центр сферы и точку касания, содержит в себе все касательные вектора, которые можно построить из данной точки сферы. Аналогично, трехмерная поверхность имеет трехмерное касательное пространство, состоящее из всех векторов, являющихся касательными к данной точке, — и так для любого числа измерений. Каждый вектор, лежащий на касательной плоскости, также является касательным к большой окружности сферы, проходящей через северный и южный полюса. Если теперь взять все большие окружности, касательные к векторам плоскости и объединить их, то результатом будет новая двухмерная поверхность. В данном случае двухмерная поверхность, полученная таким образом, совпадет с первоначальной сферой, но для более высоких размерностей подобная поверхность будет представлять собой двухмерное подмногообразие, находящееся в пределах другого, большего по размерам пространства. Кривизна касательной плоскости в двухмерном направлении будет совпадать с гауссовой кривизной полученной двухмерной поверхности.
Для того чтобы найти кривизну Риччи, возьмем некую точку на многообразии и найдем касательный вектор, проходящий через нее. Затем обратим внимание на все касательные двухмерные плоскости, содержащие данный вектор, каждая из которых имеет свою собственную кривизну в двухмерном направлении, которая, как уже было сказано, совпадает с гауссовой кривизной связанной с ней поверхности. Кривизна Риччи представляет собой среднее значение кривизны всех этих плоскостей. Многообразие можно считать риччи-плоским, если для любого произвольно выбранного вектора среднее кривизны касательных плоскостей в двухмерном направлении равно нулю, даже если для каждой отдельной плоскости это условие не выполняется.

Рис. 4.6. Первый класс Черна для двухмерных поверхностей, подобных этой, совпадающий с эйлеровой характеристикой, относится к точкам, в которых поток векторного поля полностью останавливается. На поверхности сферы, например глобуса, таких точек две. К примеру, если течение направлено с северного полюса на южный, как на изображенной слева сфере, то на каждом из полюсов суммарный поток будет равен нулю, поскольку в данных точках векторы будут взаимно компенсировать друг друга. Аналогично, если течение направлено с запада на восток, как на сфере, изображенной справа, также возникнут две точки остановки движения — на северном и южном полюсах, — в которых ничто не движется, поскольку само понятие востока и запада для этих точек отсутствует. Противоположным примером является поверхность бублика, на которой жидкость может течь как в вертикальном (на изображенном слева бублике), так и в горизонтальном направлении (на бублике, изображенном справа), не встречая при этом ни малейших препятствий. Именно поэтому первый класс Черна равен нулю для бублика, в котором сингулярные точки отсутствуют, но не равен нулю для сферы
Читать дальшеИнтервал:
Закладка: