Шинтан Яу - Теория струн и скрытые измерения Вселенной

Тут можно читать онлайн Шинтан Яу - Теория струн и скрытые измерения Вселенной - бесплатно полную версию книги (целиком) без сокращений. Жанр: Прочая научная литература, издательство Питер, год 2012. Здесь Вы можете читать полную версию (весь текст) онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.

Шинтан Яу - Теория струн и скрытые измерения Вселенной краткое содержание

Теория струн и скрытые измерения Вселенной - описание и краткое содержание, автор Шинтан Яу, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru

Революционная теория струн утверждает, что мы живем в десятимерной Вселенной, но только четыре из этих измерений доступны человеческому восприятию. Если верить современным ученым, остальные шесть измерений свернуты в удивительную структуру, известную как многообразие Калаби-Яу. Легендарный математик Шинтан Яу, один из первооткрывателей этих поразительных пространств, утверждает, что геометрия не только является основой теории струн, но и лежит в самой природе нашей Вселенной.

Читая эту книгу, вы вместе с авторами повторите захватывающий путь научного открытия: от безумной идеи до завершенной теории. Вас ждет увлекательное исследование, удивительное путешествие в скрытые измерения, определяющие то, что мы называем Вселенной, как в большом, так и в малом масштабе.

Теория струн и скрытые измерения Вселенной - читать онлайн бесплатно полную версию (весь текст целиком)

Теория струн и скрытые измерения Вселенной - читать книгу онлайн бесплатно, автор Шинтан Яу
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Квантовая интерпретация данной теории поля учитывает не только наиболее существенные особенности движения струны в пространстве-времени и поверхности, заметаемой данной струной, но также и некоторые более мелкие детали, обусловленные колебаниями струны в процессе движения. В результате мировой лист будет иметь небольшие особенности, отражающие эти колебания. В квантовой механике частица или струна, движущаяся в пространстве-времени, движется одновременно по всем возможным траекториям. Вместо того чтобы просто выбрать один мировой лист, обладающий минимальной поверхностью, квантовая теория поля рассматривает средневзвешенное значение всех возможных конфигураций мирового листа, и большое значение в ее уравнениях отведено поверхности с меньшей площадью.

Вопрос состоит в том, будет ли теория двухмерного квантового поля после усреднения, проведенного путем интегрирования по всем возможным геометриям мирового листа, по-прежнему удовлетворять условию масштабной инвариантности и другим аспектам конформности? Ответ на этот вопрос зависит от метрики пространства, в котором находится мировой лист; для одних метрик теория поля является конформной, для других — нет.

Для того чтобы определить, поддерживается или нет масштабная инвариантость конкретной метрикой, рассчитывается так называемая бета-функция, определяющая отклонение теории от конформности. Если значение бета-функции равно нулю, то при деформации мирового листа — раздувании, растяжении или сжатии — ничего не изменяется, что говорит о конформности теории. Бета-функция автоматически обращается в нуль в случае риччи-плоской метрики подобной той, которой обладают пространства Калаби-Яу. К сожалению, как и в случае многих обсуждавшихся ранее сложных уравнений, решение уравнения для бета-функции в явном виде найти невозможно. Вместо этого было найдено приближенное решение путем аппроксимации искомой функции суммой бесконечного числа слагаемых — так называемым степенным рядом. Считается, что чем больше членов ряда задействовано в аппроксимации, тем она лучше.

Чтобы лучше понять, как это работает, представьте, что вы хотите измерить площадь поверхности сферы, заворачивая ее в проволочную сетку. Если проволока состоит только из одной петли, то, натянув ее на сферу, вы едва ли получите хорошую оценку для площади. Однако если взять не одну, а четыре треугольные петли, соединенные в форме тетраэдра, охватывающего сферу, аппроксимация будет гораздо лучше. Увеличение числа петель до двенадцати — в форме пятиугольников, соединенных в додекаэдр, или до двадцати — в форме треугольников, соединенных в икосаэдр, даст еще более точные оценки. Как и в нашем примере, слагаемые степенного ряда бета-функции также носят название петель. Взяв только первое слагаемое ряда, вы получите однопетлевую бета-функцию, взяв первые два — двухпетлевую и т. д.

Добавление новых петель к проволочной сетке приводит к следующей проблеме: расчеты бета-функции, которые и без того чрезвычайно сложны, при возрастании числа петель становятся еще сложнее, и объем вычислений многократно возрастает. Расчеты показали, что первые три слагаемых степенного ряда, как и было предсказано ранее, равны нулю — что весьма обнадежило физиков. Однако в статье 1986 года Маркус Грисару, физик, в настоящее время работающий в Университете Макгилла, и двое его коллег, Антон ван де Вен и Даниэла Занон, обнаружили, что четырехпетлевая бета-функция в нуль не обращается. Последовавший за этим расчет, выполненный Грисару и его коллегами, показал, что пятипетлевая бета-функция тоже не равна нулю. Это открытие стало заметным ударом по позициям, занимаемым в физике многообразиями Калаби-Яу, поскольку из него следовало, что метрика данных многообразий не приводит к сохранению конформной инвариантности.

«У меня, как у сторонника теории струн и суперсимметрии, наши результаты вызвали некоторое беспокойство, — говорит Грисару. — Мы, конечно, были счастливы, что эти результаты в некоторой степени прославили нас, но слава разрушителя прекрасного здания — это далеко не то, чего можно желать каждому. Впрочем, мое мнение о науке заключается в том, что нужно смириться с теми результатами, которые ты получил». [85] Marcus Grisaru (McGill University), interview with author, August 18, 2008.

Однако не все еще было потеряно. В статье, выпущенной в 1986 году Дэвидом Гроссом и Виттеном, работавшими тогда в Принстоне, было показано, что, несмотря на то что для риччи-плоской метрики многообразий Калаби-Яу конформная инвариантность действительно не соблюдается, эту метрику можно слегка изменить так, чтобы бета-функция, как и требовалось, обратилась в нуль. Подобная «настройка» метрики проводится не за один, а за бесконечное число корректировок, или квантовых поправок . Но в подобных случаях, когда поправки представляют собой бесконечный ряд, неминуемо возникает вопрос: сойдется ли этот ряд в конце концов к искомому решению? «Может ли выйти так, что, сведя воедино все поправки, никакого решения вы не получите?» — задается вопросом Плессер.

В лучшем случае небольшое изменение метрики приведет к незначительному изменению решения. К примеру, нам известно, как решать уравнение 2x=0 , его ответом является x=0 . «Если теперь я захочу решить уравнение 2x=-0,1 , то обнаружу, что ответ изменился весьма несущественно ( x=-0,05 ), — что является для меня оптимальным вариантом», — поясняет Плессер. Уравнение x 2=0 также не вызывает особых затруднений (вновь x=0 ). «Но если я попытаюсь решить уравнение x 2=-0,1 , то обнаружу, что оно попросту не имеет решения, по крайней мере, в действительных числах, — говорит он. — Итак, вы видите, что небольшое изменение параметров может привести как к тому, что решение лишь немного изменится, так и к тому, что оно вообще исчезнет [например, для вещественных чисел]». [86] Plesser, interview with author, September 3, 2008.

Как было установлено Гроссом и Виттеном, для исправленного многообразия Калаби-Яу последовательный ряд поправок сходится. Они показали, что, если почленно исправлять метрику Калаби-Яу, в результате возникнет сложнейшее уравнение, которое тем не менее можно решить. При этом все петли бета-функции устремятся к нулю.

После этого, по словам Шамита Качру из Стэнфорда, «вопрос о том, чтобы полностью отбросить многообразия Калаби-Яу, уже не стоял; теперь достаточно было только слегка их модифицировать. И, поскольку изначально не существовало возможности записать метрику Калаби-Яу, необходимость ее небольшого преобразования не стала чем-то особо удручающим». [87] Shamit Kachru (Stanford University), interview with author, August 19, 2008.

Дальнейшее развитие идей о способах преобразования метрики Калаби-Яу основано на появившейся в том же году работе Денниса Немесчанского и Ашока Сена, в то время работавших в Стэнфорде. Полученное в результате исправления многообразие топологически оставалось многообразием Калаби-Яу, а его метрика — почти риччи-плоской, хотя и не совсем. Немесчанский и Сен вывели точную формулу, показывающую степень отклонения модифицированной метрики от риччи-плоского случая. Их работа, совместно с работой Гросса и Виттена, «помогла сохранить многообразия Калаби-Яу для физики, поскольку без них пришлось бы прекратить исследования в целой области», — утверждает Сен. Более того, по словам Сена, без первого допущения о том, что многообразия Калаби-Яу, фигурирующие в теории струн, являются риччи-плоскими, добраться до окончательного решения было бы невозможно. «Если бы мы начали с метрики, не являющейся риччи-плоской, сложно даже представить, при помощи каких методик мы получили бы исправленный вариант». [88] Ashoke Sen (Harish-Chandra Research Institute), interview with author, August 22, 2008.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Шинтан Яу читать все книги автора по порядку

Шинтан Яу - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




Теория струн и скрытые измерения Вселенной отзывы


Отзывы читателей о книге Теория струн и скрытые измерения Вселенной, автор: Шинтан Яу. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x