Шинтан Яу - Теория струн и скрытые измерения Вселенной
- Название:Теория струн и скрытые измерения Вселенной
- Автор:
- Жанр:
- Издательство:Питер
- Год:2012
- Город:Санкт-Петербург
- ISBN:978-5-459-00938-5
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Шинтан Яу - Теория струн и скрытые измерения Вселенной краткое содержание
Революционная теория струн утверждает, что мы живем в десятимерной Вселенной, но только четыре из этих измерений доступны человеческому восприятию. Если верить современным ученым, остальные шесть измерений свернуты в удивительную структуру, известную как многообразие Калаби-Яу. Легендарный математик Шинтан Яу, один из первооткрывателей этих поразительных пространств, утверждает, что геометрия не только является основой теории струн, но и лежит в самой природе нашей Вселенной.
Читая эту книгу, вы вместе с авторами повторите захватывающий путь научного открытия: от безумной идеи до завершенной теории. Вас ждет увлекательное исследование, удивительное путешествие в скрытые измерения, определяющие то, что мы называем Вселенной, как в большом, так и в малом масштабе.
Теория струн и скрытые измерения Вселенной - читать онлайн бесплатно полную версию (весь текст целиком)
Интервал:
Закладка:
♦ Во-вторых, несмотря на широкое обсуждение, пока никто не знает, как связать гравитацию, которая описывается общей теорией относительности, и другие силы в одну цельную теорию. Если теории струн удастся воспроизвести Стандартную модель, введя в нее гравитацию, то мы будем намного ближе к полной теории природы. В таком случае мы получим не только Стандартную модель с гравитацией, но и суперсимметричную Стандартную модель с гравитацией.
Физики пытаются использовать различные методы для реализации такой Стандартной модели, включая орбифолды («орбитальные многообразия», похожие на многообразия в плоском пространстве), пересекающиеся браны, расположенные друг над другом браны и аналогичные вещи, достигнув значительного прогресса на многочисленных фронтах. Однако в нашей дискуссии будет сделан акцент только на одной области, а именно Е8×Е8 гетеротической теории струн, являющейся одной из пяти вариаций этой теории. Мы сделали такой выбор не потому, что считаем ее самой перспективной (я не могу об этом судить), но из-за того, что усилия, приложенные в этом направлении, тесно связаны с геометрией, то есть дисциплиной, которая, бесспорно, имеет наиболее длинную историю попыток перехода от геометрии Калаби-Яу к реальному миру.
Я не подыгрываю геометрии из-за того, что она является во многих отношениях главной темой этой книги. Она жизненно важна для попытки, о которой идет речь. Во-первых, мы не можем описать силы — важную часть Стандартной модели и любой предполагаемой теории природы — без геометрии. Как сказал Кумрун Вафа, «все четыре взаимодействия имеют под собой геометрическую основу, а три из них — электромагнитное, слабое и сильное — связаны между собой симметрией» [159] Cumrun Vafa, “The Geometry of Grand Unified Theories,” lecture, Harvard University, Cambridge, Mass., August 29, 2008.
. Стандартная модель объединяет вместе три силы и связанные с ними группы (или калибровки) симметрии: специальную унитарную группу 3 или SU(3), которая соответствует сильным взаимодействиям; специальную унитарную группу 2 или SU(2), которая соответствует слабым взаимодействиям, и первую унитарную группу или U(1), которая соответствует электромагнитным взаимодействиям. Симметричная группа состоит из множества всех операций, таких как вращение, которые можно выполнять с объектом, чтобы он при этом оставался неизменным. Вы берете объект и применяете к нему симметричную операцию один или столько раз, сколько хотите, и в конце объект будет выглядеть так же, как в начале. Фактически, вы не можете сказать, производились ли с этим объектом какие-либо манипуляции.
Возможно, самой простой группой для описания является группа U(1), которая включает все вращения, которые вы совершаете с кругом на плоскости. Это одномерная симметричная группа, поскольку вращения происходят вокруг одной одномерной оси, перпендикулярной кругу и проходящей через его центр. SU(2) связана с вращениями в трех измерениях, а более абстрактная SU(3) включает вращения в восьми измерениях. В этом случае эмпирическое правило состоит в том, что любая группа SU(n) обладает симметрией размерности n 2-1 . Размерности трех подгрупп являются аддитивными, это означает, что общая симметрия Стандартной модели является двенадцатимерной (1 + 3 + 8 = 12).
В качестве решений уравнений Эйнштейна многообразия Калаби-Яу определенной геометрии могут помочь нам произвести расчет гравитационной части нашей модели. Но могут ли эти многообразия учитывать другие силы, входящие в Стандартную модель, и если да, то каким образом? Для ответа на этот вопрос, боюсь, нам придется выбрать окольный путь. На сегодняшний день физика элементарных частиц — это квантовая теория поля, что означает, что все силы, а также все частицы представлены полями. Зная поля, пронизывающие четырехмерное пространство, мы можем вывести связанные с ними силы. Эти силы, в свою очередь, могут быть представлены в виде векторов, обладающих направлением и длиной, это означает, что в каждой точке пространства объект будет испытывать притяжение и отталкивание в определенном направлении и с определенной силой. Например, в произвольной точке Солнечной системы сила тяготения, приложенная к такому объекту, как планета, вероятно, будет направлена к Солнцу, а величина этой силы будет зависеть от расстояния до Солнца. Электромагнитная сила, действующая на заряженную частицу, находящуюся в данной точке, точно так же будет зависеть от ее положения относительно других заряженных частиц.
Стандартная модель является не просто теорией поля, но специальным видом теории поля, называемой калибровочной теорией и получившей широкое распространение в 1950-е годы благодаря работе физиков Чжэньнин Янга и Роберта Миллса (впервые упомянутых в третьей главе). В основе этой теории лежит идея о том, что Стандартная модель объединяет различные симметрии в сложную группу симметрий, которую обозначают как SU(3)×SU(2)×U(1). Эти симметрии являются калибровочными, что делает их специфическими и непохожими на обычные симметрии. Можно взять одно из разрешенных преобразований симметрии, например вращение на плоскости, и применить его по-разному в различных точках пространства-времени, выполнив поворот, скажем, на 45° в одной точке, на 60° в другой и на 90° в третьей. Несмотря на неоднородность применения симметрии, «уравнения движения», которые управляют динамической эволюцией полей, не изменятся, как и вся остальная физика. Вообще ничего не изменится.
Симметрии, как правило, не работают таким образом, если они не являются калибровочными симметриями. Фактически Стандартная модель имеет четыре «глобальные» симметрии, связанные с частицами вещества и сохранением заряда, которые не являются калибровочными. Эти глобальные симметрии действуют на материальные поля Стандартной модели, которые мы обсудим позже. В Стандартной модели и вообще в теории поля существует еще одна глобальная симметрия, которая не является калибровочной. Эта симметрия называется симметрией Пуанкаре . Она включает простые переносы, такие как перемещение всей Вселенной на один метр вправо или проведение одного и того же эксперимента в двух разных лабораториях, и вращения, когда конечный результат выглядит аналогично исходному.
Однако если требуется, чтобы некоторые симметрии были калибровочными, то из расчетов Янга и Миллса следует, что для этого необходимо ввести в теорию нечто дополнительное, некий внешний фактор. Этим «нечто» могут быть калибровочные поля. В Стандартной модели калибровочные поля соответствуют калибровочным симметриям SU(3)×SU(2)×U(1), это означает по ассоциации, что калибровочные поля соответствуют трем взаимодействиям, которые включены в состав модели: сильному, слабому и электромагнитному. Между прочим, Янг и Миллс не были первыми, кто разработал калибровочную теорию U(1), описывающую электромагнетизм, — это было сделано за десятилетие до них. Но они были первыми, кто разработал калибровочную теорию для SU(2), которая показала путь разработки SU( n ) теорий, для любого n больше двух, включая SU(3).
Читать дальшеИнтервал:
Закладка: