Шинтан Яу - Теория струн и скрытые измерения Вселенной
- Название:Теория струн и скрытые измерения Вселенной
- Автор:
- Жанр:
- Издательство:Питер
- Год:2012
- Город:Санкт-Петербург
- ISBN:978-5-459-00938-5
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Шинтан Яу - Теория струн и скрытые измерения Вселенной краткое содержание
Революционная теория струн утверждает, что мы живем в десятимерной Вселенной, но только четыре из этих измерений доступны человеческому восприятию. Если верить современным ученым, остальные шесть измерений свернуты в удивительную структуру, известную как многообразие Калаби-Яу. Легендарный математик Шинтан Яу, один из первооткрывателей этих поразительных пространств, утверждает, что геометрия не только является основой теории струн, но и лежит в самой природе нашей Вселенной.
Читая эту книгу, вы вместе с авторами повторите захватывающий путь научного открытия: от безумной идеи до завершенной теории. Вас ждет увлекательное исследование, удивительное путешествие в скрытые измерения, определяющие то, что мы называем Вселенной, как в большом, так и в малом масштабе.
Теория струн и скрытые измерения Вселенной - читать онлайн бесплатно полную версию (весь текст целиком)
Интервал:
Закладка:

Рис. 9.5.С помощью процесса дискретизации можно аппроксимировать одномерную кривую и двухмерную поверхность конечным числом точек. Такая аппроксимация, естественно, будет точнее при увеличении количества точек
Если мы знаем, как измерить расстояние в более крупном пространстве (большом сыре), то мы также будем знать, как измерить размер дырки. В этом смысле вложенное пространство, или дыра, наследует метрику из «сырного» опорного пространства, в котором она находится. В 1950-е годы Джон Нэш доказал, что если поместить римановы многообразия в пространство с достаточно большим количеством измерений, то можно получить любую желаемую индуцированную метрику. Но теорема Нэша о вложении, являющаяся одной из самых великих работ этого знаменитого математика, применима к действительным многообразиям, помещенным в действительное пространство. В общем случае, комплексный вариант теоремы Нэша неверен. Но я считал, что комплексная версия этой теоремы может быть верной при определенных обстоятельствах. Например, я аргументировал, что большой класс кэлеровых многообразий может быть вложен в проективное пространство высокой размерности таким образом, что индуцированная метрика будет сколь угодно близка к исходной метрике при условии, что индуцированная метрика соответствующим образом масштабирована или «нормализована», то есть все ее векторы умножены на константу. Будучи специальным случаем кэлеровых многообразий, многообразия Калаби-Яу с риччи-плоской метрикой удовлетворяют этому топологическому условию. Это означает, что можно всегда индуцировать риччи-плоскую метрику, и ее можно всегда аппроксимировать путем вложения многообразия в опорное или проективное пространство со значительно большей размерностью.

Рис. 9.6.В геометрии часто говорят о «вложении» объекта или пространства в «опорное пространство» высокой размерности. В данном случае мы вложили квадрат, то есть одномерный объект, поскольку он состоит из изогнутого несколько раз отрезка прямой, в двухмерное опорное пространство — сферу
Ганг Тиан, будучи в то время моим аспирантом, доказал это в статье, вышедшей в 1990 году, которая фактически была его диссертационной работой. С тех пор к моему исходному утверждению было добавлено несколько важных уточнений, включая диссертацию еще одного моего аспиранта Вей-Донг Руана о том, что возможна более точная аппроксимация риччи-плоской метрики. Главное уточнение было посвящено способу вложения многообразия Калаби-Яу в опорное пространство. Нельзя сделать это бессистемно. Идея состоит в том, чтобы выбрать соответствующее вложение так, чтобы индуцированная метрика была наиболее близка к риччи-плоской метрике. Для этого следует поместить многообразие Калаби-Яу на возможно лучшее место, так называемую сбалансированную позицию, которая является той позицией среди всех возможных, где наследуемая метрика приближается вплотную к риччи-плоской.
Понятие сбалансированной позиции ввели в 1982 году Петер Ли и я для случая подмногообразия (или подповерхностей) на сфере, находящейся в действительном пространстве. Затем мы пошли дальше — к общему случаю подмногообразия в сложном опорном (или проективном) пространстве со множеством измерений. В те годы Жан-Пьер Бургиньон, являющийся в настоящее время директором Института высших научных исследований, начал с нами сотрудничество, которое вылилось в 1994 году в совместную статью по этой теме.
Ранее на конференции по геометрии в Калифорнийском университете в Лос-Анджелесе я предположил, что каждое кэлерово многообразие, допускающее риччи-плоскую метрику, включая Калаби-Яу, является устойчивым, но такое понятие устойчивости сложно определить. На последующих семинарах по геометрии я продолжал подчеркивать важность работы Бургиньона-Ли-Яу, как теперь ее называют, в отношении идеи устойчивости. Наконец, несколько лет спустя мой аспирант Вей Луо из Массачусетского технологического института установил связь между устойчивостью Калаби-Яу и условием равновесия. Благодаря работе Луо я смог видоизменить свою гипотезу, придя к заключению, что если вложить Калаби-Яу в многомерное пространство, то можно всегда найти положение, в котором позиция будет равновесной.
Саймон Дональдсон доказал, что эта гипотеза является верной. Его доказательство также подтвердило суть этой новой схемы аппроксимации: если вложить Калаби-Яу в высокоразмерное опорное пространство и выполнить условие равновесия, то метрика будет значительно ближе к риччи-плоской. Дональдсон доказал это, показав, что индуцированные метрики образуют последовательность в опорных пространствах увеличивающейся размерности и что эта последовательность сходится, стремясь к идеальной риччи-плоской метрике при стремлении числа измерений к бесконечности. Однако это заявление справедливо лишь постольку, поскольку верна гипотеза Калаби: когда Дональдсон продемонстрировал, что эта метрика сходится к риччи-плоской метрике, его доказательство опиралось на существование риччи-плоской метрики.
Доказательство Дональдсона имело также и практические результаты, поскольку он показал, что существует лучший способ выполнения встраивания — равновесный метод. Разрешение проблемы таким способом дает средства ее решения и возможную стратегию для вычислений. В 2005 году Дональдсон применил этот метод, численно получив метрику для K3-поверхности, а также показав, что не существует фундаментальных препятствий для использования этого метода в случае увеличения числа измерений. [173] Simon Donaldson (Imperial College), interview with author, November 29, 2008.
В 2008 году Майкл Дуглас с сотрудниками в своей статье, основанной на работе Дональдсона, получили численными методами метрику для семейства шестимерных многообразий Калаби-Яу — вышеупомянутой квинтики.
В настоящее время Дуглас сотрудничает с Брауном и Оврутом в вопросах вычисления метрики для многообразия Калаби-Яу в их модели. Пока никто не смог вычислить константы связи или массы. Но Оврута привлекает перспектива вычисления масс частиц. «Не существует способа выведения этих величин из самой Стандартной модели, — говорит он, — но теория струн, по крайней мере, предлагает возможность, которой никогда не было ранее». Не все физики согласны с тем, что эта цель достижима, однако Оврут считает, «что дьявол кроется в деталях. Нам еще предстоит вычислить константы взаимодействия Юкавы и массы, которые могут оказаться полностью неверными». [174] Ovrut, interview with author, November 19, 2008.
Интервал:
Закладка: