Марк Мосевицкий - Распространенность жизни и уникальность разума?

Тут можно читать онлайн Марк Мосевицкий - Распространенность жизни и уникальность разума? - бесплатно полную версию книги (целиком) без сокращений. Жанр: Прочая научная литература, издательство ПИЯФ РАН, год 2008. Здесь Вы можете читать полную версию (весь текст) онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.

Марк Мосевицкий - Распространенность жизни и уникальность разума? краткое содержание

Распространенность жизни и уникальность разума? - описание и краткое содержание, автор Марк Мосевицкий, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru

В книге рассматривается возникновение и развитие жизни на Земле. Исследуется влияние на жизнь различных эволюционных катастроф: падение астероидов, глобальные оледенения и т. п. Подчеркивается отсутствие признаков существования других цивилизаций в доступном для общения космосе и как следствие низкая вероятность выхода эволюции на путь, ведущий к разуму.

Распространенность жизни и уникальность разума? - читать онлайн бесплатно полную версию (весь текст целиком)

Распространенность жизни и уникальность разума? - читать книгу онлайн бесплатно, автор Марк Мосевицкий
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Необходимо иметь в виду также внутренние повреждающие факторы. Это частицы и излучения, освобождающиеся при распаде радиоактивных элементов, присутствующих в окружающем клетку материале (пылевой чехол, метеорит-носитель), или непосредственно инкорпорированных в состав клетки ( 14C, 3H, 40K, и др.).

Наконец, необходимо иметь в виду еще один механизм повреждения молекулярных структур — спонтанные химические процессы, которые приводят, главным образом, к разрывам химических связей в молекулах белков и нуклеиновых кислот. Этот же механизм может оказаться ответственным за образование случайных связей (сшивок) между оказавшимися в тесной близости реакционными группами. В обычных условиях, а тем более при повышенной температуре, эти процессы являются главной причиной инактивации даже высокоочищенных ферментов, понижения растворимости веществ и др. Однако при сверхнизких температурах, господствующих в космосе, вероятность (скорость) таких процессов резко падает. Это связано с тем, что для осуществления реакции перехода из одного конечного состояния в другое должен быть преодолен активационный барьер, соответствующий энергии активации (U) химической реакции (20–30 ккал/моль). Формально кинетика реакции определяется следующим уравнением:

K p= Be -Uact/RT(K p— константа скорости реакции).

K pуменьшается экспоненциально с понижением температуры. Уже при температуре 50° K химическая реакция должна быть полностью замороженной. Фактически это не так. Даже при столь низких температурах химические процессы имеют конечную скорость. Исследуя эту проблему, В.И. Гольданский и сотрудники обратили внимание на возможность туннельного перехода, т. е. осуществления химических реакций (как синтеза, так и деградации) без преодоления активационного барьера (Гольданский, 1986). Таким образом, даже в спрятавшейся в толще метеорита клетке или споре по ряду причин накапливаются повреждения, которые не могут быть своевременно устранены. Повреждаются не только генетические компоненты (ДНК), но и другие клеточные структуры, в том числе ферменты. Именно в инактивации ферментов заключена весьма существенная проблема. После попадания сильно поврежденной клетки даже в самые благоприятные условия она не смогла бы восстановить жизнеспособность, если оказались инактивированными ферменты, осуществляющие репарацию ДНК, транскрипцию (синтез РНК), трансляцию (синтез белка), энергообеспечение и ряд других необходимых для обеспечения жизнедеятельности функций. С учетом всего вышесказанного, способность клетки восстановиться после пребывания в космосе в течение миллионов лет представляется весьма маловероятной. Однако парадокс заключается в том, что большой вероятности тут и не требовалось. Единственная прорвавшаяся из космоса клетка, повреждения которой оказались “совместимы с жизнью”, могла бы оплодотворить стерильную, но уже способную принять жизнь Землю. Мы рассмотрели весьма жесткую ситуацию, в которой оказываются клетки при долгом пребывании в космосе. Однако в каких-то случаях это пребывание может быть намного короче.

Исследование магнитных характеристик Марсианского метеорита ALH84001 показало, что внутренние области этого метеорита ни при вылете, ни при приземлении не подвергались нагреву выше 40 °C (Weiss et al., 2000). Доказана также возможность выхода марсианских метеоритов на траектории, по которым они попадают на Землю через несколько лет (Weiss et al., 2000; Gladman et al., 2005).

Очевидно, что пусть не частое, но возможное сочетание этих благоприятных факторов практически гарантировало доставку микроорганизмов, “спрятавшихся” в расщелинах выброшенной породы, живыми, если жизнь на Марсе действительно присутствовала.

Здесь следует заметить, что, признавая возможность заноса жизни на Землю, нельзя исключить обратное явление: распространение земной жизни в космическом пространстве. Действительно, жизнь на Земле существует уже более 3.5 млрд лет. За это время Земля многократно сталкивалась с крупными телами, и каждый раз материал, в котором содержались разнообразные микроорганизмы, оказывался в космосе. Часть этого материала не возвращалась на Землю и в качестве земных метеоритов могла оказаться на других планетах. Поэтому если будет обнаружена жизнь или следы ее существования на других планетах, в том числе на Марсе, то встанет вопрос, не явилась ли она ветвью земной жизни.

В свое время большой интерес вызвали сообщения о присутствии в являющихся ровесниками Солнечной системы углистых хондритах микрообразований, по структуре напоминающих окаменевшие клетки (Claus and Nagy, 1961; Meinschein et al., 1963; Urey, 1966; Nagy, 1975). Размеры микрообразований — 30–40 микрон, толщина стенок — около одного микрона. Интерес к этим структурам был подогрет находками весьма схожих структур в древнейших земных породах (см. Рис. 2). Исследованию подвергали тонкие полированные шлифы, где наблюдаются срезы присутствующих структур. В них хорошо различима оболочка и представлены элементы, которые можно принять за клеточные органеллы. К наиболее впечатляющим земным образцам относятся датируемые ранним палеозоем (600 млн лет) образцы, добытые Рудавской (1972) на трехкилометровой глубине в Восточной Сибири. Присутствующие в них микроструктуры идентифицированы как окаменелые акритархи рода Polyedrixium. Интрига состоит в том, что на них очень похожи микроструктуры, присутствующие в метеорите Оргей (Orgueil).

Подборка образцов на Рис. 3А-Г демонстрирует схожесть микроструктур, выявленных в углистых хондритах и в земных породах. Соответствующая гипотеза не заставила себя ждать (Timoffejev., 1963; Urey, 1966; Rossignol-Strick and Barghoorn, 1971; Nagy, 1975; Pflug, 1984). Идея ее в том, что жизнь появилась еще в период формирования Солнца из газово-пылевой туманности. В сферическом слое на определенном расстоянии от молодого Солнца присутствовали необходимые для формирования жизни условия: температура 0-100 °C, влага, несложная органика, необходимая для синтеза более сложных веществ, наконец, пылевые частицы, о возможной роли которых в формировании жизни говорилось выше. Период, в течение которого могла развиваться жизнь в допланетной Солнечной системе, нельзя назвать длительным — не более 100 млн лет. Относительно небольшой временной интервал компенсируется внушительными размерами пространства, которое могло послужить полигоном для испытания разных подходов к “конструированию” живых организмов. Оно было неизмеримо большим по сравнению с пригодным для этих целей пространством на Земле.

Рис 3 Обнаруженные в метеоритах структуры напоминающие клеточные - фото 3

Рис. 3. Обнаруженные в метеоритах структуры, напоминающие клеточные окаменелости. А. Окаменелая клетка планктонного микроорганизма (акритарха) из раннепалеозойских отложений Восточной Сибири; размер около 15 микрон (Рудавская, 1972). Б. Похожая на акритарх типичная микроструктура из метеорита Оргей (Orgueil) (см. Рудавская, 1972). В. Микроструктура из метеорита Михей (Mighei) (см. Urey, 1966). Г. Микроструктура (возможно, окаменелость делящейся клетки) из метеорита Оргей (Claus and Nagy, 1961). А-Г. Размеры микроструктур около 15 микрон. Д-Ж. Магнетитовые гранулы, в том числе организованные в цепочки, обнаруженные в Марсианском метеорите ALH84001 (McKay et al., 1996; Friedmann et al., 2001; MacKay et al., 2003). 3 и И. Обнаруженные в метеорите ALH84001 микроструктуры толщиной 0.1–0.2 микрона, идентифицированные как «нанобактерии» (McKay et al., 1996; Kerr, 1996; McKay et al., 2003).

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Марк Мосевицкий читать все книги автора по порядку

Марк Мосевицкий - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




Распространенность жизни и уникальность разума? отзывы


Отзывы читателей о книге Распространенность жизни и уникальность разума?, автор: Марк Мосевицкий. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x