LibKing » Книги » Научные и научно-популярные книги » Прочая научная литература » Марк Мосевицкий - Распространенность жизни и уникальность разума?

Марк Мосевицкий - Распространенность жизни и уникальность разума?

Тут можно читать онлайн Марк Мосевицкий - Распространенность жизни и уникальность разума? - бесплатно полную версию книги (целиком). Жанр: Прочая научная литература, издательство ПИЯФ РАН, год 2008. Здесь Вы можете читать полную версию (весь текст) онлайн без регистрации и SMS на сайте LibKing.Ru (ЛибКинг) или прочесть краткое содержание, предисловие (аннотацию), описание и ознакомиться с отзывами (комментариями) о произведении.
Марк Мосевицкий - Распространенность жизни и уникальность разума?
  • Название:
    Распространенность жизни и уникальность разума?
  • Автор:
  • Жанр:
  • Издательство:
    ПИЯФ РАН
  • Год:
    2008
  • ISBN:
    5-86763-203-2
  • Рейтинг:
    4/5. Голосов: 81
  • Избранное:
    Добавить в избранное
  • Ваша оценка:

Марк Мосевицкий - Распространенность жизни и уникальность разума? краткое содержание

Распространенность жизни и уникальность разума? - описание и краткое содержание, автор Марк Мосевицкий, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru

В книге рассматривается возникновение и развитие жизни на Земле. Исследуется влияние на жизнь различных эволюционных катастроф: падение астероидов, глобальные оледенения и т. п. Подчеркивается отсутствие признаков существования других цивилизаций в доступном для общения космосе и как следствие низкая вероятность выхода эволюции на путь, ведущий к разуму.

Распространенность жизни и уникальность разума? - читать онлайн бесплатно полную версию (весь текст целиком)

Распространенность жизни и уникальность разума? - читать книгу онлайн бесплатно, автор Марк Мосевицкий
Тёмная тема

Шрифт:

Сбросить

Интервал:

Закладка:

Сделать

2.2. История ранней Земли. Образование Луны

Когда со времени образования Солнечной системы прошло около 100 млн лет, на поверхности первоначально расплавленной Земли стала образовываться твердая корка. Однако начавшийся было процесс формирования земной коры был прерван столкновением Земли с другой планетой, по массе близкой Марсу. В результате удара и вызванного мгновенным разогревом взрыва в космос было выброшено громадное количество вещества. Оно принадлежало, главным образом, планете-пришельцу, однако значительное количество вещества Земли также оказалось в космосе. Из этого материала сформировался наш единственный спутник — Луна, а на Земле осталась глубокая воронка, в которой впоследствии разместился самый большой и глубокий Тихий океан. Выделившееся при столкновении тепло было столь значительным, что поверхность Земли вновь оказалась расплавленной. Это произошло 4.45 млрд лет тому назад. (Newsom and Taylor, 1989). Предложена и несколько иная трактовка этого события (Asphaug et al., 2006). Согласно этой трактовке, тогда столкнулись две протопланеты (планетезимали). Именно при их столкновении и фактическом слиянии образовалась Земля, обращающаяся вокруг Солнца по почти круговой орбите. Тогда же из выброшенного в космос материала обеих протопланет сформировалась Луна.

Независимо от конкретных обстоятельств, приведших к образованию Луны, на этом событии в истории Земли следует остановиться более подробно. Луна оказала существенное влияние на поведение Земли и, как следствие, на ее климат. Столкновение с крупным телом и образование Луны вызвали наклон земной оси по отношению к орбите движения Земли вокруг Солнца. Именно этот наклон (около 23.5°) обусловливает смену времен года на нашей планете. От наклона земной оси зависит и климат в любом регионе планеты. Но воздействие среды — один из главных факторов, задающих направление эволюции живых существ. Первоначально Луна сформировалась очень близко от Земли — на расстоянии 20–30 тыс. км. В тот период Луна оказывала сильное возмущающее воздействие на атмосферу Земли и вызывала приливы сначала в расплавленной коре, а затем — в океанах и морях. В тот период Земля вращалась вокруг своей оси значительно быстрее, чем ныне: длина суток составляла около 6 часов. Приливные явления, создавая трение, замедляли вращение Земли, увеличивая длину суток. Вследствие этого (для сохранения момента импульса системы) Луна стала удаляться от Земли. Сейчас она находится на расстоянии около 380 тыс. км и продолжает удаляться со скоростью 3.5 см в год. 4 млрд лет тому назад Луна успела удалиться на 140 тыс. км, и ее воздействие на Землю перестало быть экстремальным.

Согласно преобладающим ныне представлениям, глобальное плавление коры в истории Земли происходило, как минимум, еще один раз. В отличие от всех событий, происходивших на Земле ранее, это происшествие “документировано” благодаря появлению Луны, которая быстро растеряла свою первоначальную атмосферу. Вода также испарилась, по крайней мере, из поверхностных слоев. Благодаря этому на Луне почти с самого ее возникновения не было ветровой и водной эрозии, и самые древние детали рельефа, близкие по возрасту самой Луне, сохранились до наших дней. Наблюдение систем перекрывающихся лунных кратеров и лавовых потоков, а также анализ доставленных на Землю проб лунного грунта позволили установить, что сильнейшие метеоритные ливни обрушились на Луну 4.1–3.8 млрд лет тому назад (Maurer et. al., 1978; Strom et al., 2005; Gomes et al., 2005). Судя по кратерам, размеры некоторых метеоритов превышали 10 км. Однако центр тяжести системы Земля-Луна находится в Земле. Поэтому основные потоки метеоритов принимала на себя Земля. Согласно подтвержденной расчетами гипотезе, в тот период происходили выплескивания материала астероидного пояса, вызванные нарушениями орбитального движения планет-гигантов (Strom et al., 2005; Gomes et al., 2005; Tsiganis, 2005). По мнению некоторых авторов, в этот период кора Земли вновь расплавилась, а уже существовавший до того океан испарился (Chyba, 1993; Wilde, 2001). Эти сведения из ранней истории Земли имеют прямое отношение к вопросу о возникновении жизни на Земле, т. к. вызванное сильнейшим разогревом (до тысячи градусов и более) плавление коры каждый раз приводило бы к ее стерилизации. Если на Земле ранее уже были осуществлены какие-то шаги на пути становления жизни, т. е. были синтезированы сложные органические соединения или даже присутствовали живые организмы, то после очередного стерилизующего события все должно было начинаться сначала. Принято считать, что линия жизни на Земле, продолженная до наших дней, могла иметь начало не ранее 3.9–3.8 млрд лет тому назад, ибо именно с тех пор тотального плавления земной коры не было ни разу. Этот срок обозначен геологами на основании исследования древнейших скальных пород как вулканического, так и осадочного происхождения, выходы которых обнаружены на разных континентах: в Гренландии, Австралии, Южной Африке, Восточной Сибири. Метод определения возраста минералов основан на количественном определении газообразных продуктов радиоактивного распада, накапливающихся в толще минерала. Из расплава эти продукты улетучиваются, и отсчет возраста минерала начинается после его затвердевания. Подходящим для такого исследования является семейство 40K (К-захват) и 40Ar. Период полураспада 40K составляет 1.3х10 9лет. Определение содержания в минерале инертного газа 40Ar относительно 40K позволяет определить время, прошедшее по-сле последнего плавления минерала. Именно так, по возрасту самых древних минералов, был определен промежуток времени после последнего глобального плавления Земли — почти 4 млрд лет.

К тому времени в центральной области Земли сформировалось расплавленное железо-никелевое ядро, в котором, по последним данным, присутствуют и силикаты (Elliott, 2007). Его окаймляет расплавленная мантия, образованная, главным образом, силикатами, окислами металлов, базальтами и насыщенная разнообразными газами. Затвердевшая кора 4 млрд лет тому назад была тоньше нынешней. Присутствующая в верхних слоях мантии магма во многих местах прорывала кору и разливалась на поверхности. Вместе с лавой наружу прорывались газы, которые формировали раннюю атмосферу Земли. Представлять как можно точнее состав ранней атмосферы принципиально важно для правильного направления рассуждений о химических реакциях, протекавших тогда в атмосфере, и, в первую очередь, о синтезах органических соединений, которые являлись необходимыми стадиями формирования среды, в которой могла появиться жизнь.

2.3. Атмосфера ранней Земли и ее роль в доклеточной эволюции

Самым распространенным элементом во Вселенной является водород. В газово-пылевой туманности, из которой сформировалась Солнечная система, также преобладал водород. Поэтому естественной была гипотеза Опарина и Юри о преобладании в ранней атмосфере Земли водорода. Это означало бы, что другие атомы и молекулы находились в максимально восстановленном состоянии. Так, металлы должны были существовать, в основном, в чистом виде, а не в форме окислов. В атмосфере преобладали бы соединения, богатые водородом: метан (CH 4), аммиак (NH 3), сероводород (SH 2). В присутствии паров воды восстановительная атмосфера благоприятна для синтеза сложных органических соединений. В источниках энергии, необходимой для осуществления реакций, также не было недостатка. Благодаря отсутствию в атмосфере свободного кислорода (и, соответственно, озона) она не являлась препятствием для интенсивного ультрафиолетового излучения Солнца, которое практически без потерь достигало поверхности Земли. Другими источниками энергии были мощные разряды атмосферного электричества, потоки ионизирующих частиц с Солнца и из дальнего космоса и, наконец, тепло, доставлявшееся раскаленной лавой, горячими источниками, все еще многочисленными метеоритами, энергия торможения которых освобождалась в форме тепла. По идее Опарина и Юри образовавшиеся в атмосфере органические вещества накапливались в водоемах (“первичный бульон”). Юри и Миллер первыми поставили эксперименты, моделирующие процессы, которые могли идти на ранней Земле в описанных выше условиях (Miller and Urey, 1956; Miller, 1986). Они пропускали электрические разряды через обладающую восстановительными свойствами смесь газов в герметически закрытой колбе, снабженной электродами. В смеси обычно присутствовали водород, метан, аммиак, пары воды и др. Продуктами реакций оказались формальдегид, аминокислоты, жирные кислоты и даже более сложные соединения. Расчеты показали, что благодаря высокой эффективности синтеза органических соединений в атмосфере подобного состава в течение нескольких миллионов лет на Земле могло накопиться достаточно разнообразной органики для образования концентрированного “первичного бульона”, что позволило бы осуществиться взаимодействиям, ведущим к образованию еще более сложных молекул, в том числе полимеров. Первоначально образование коротких белковых молекул (пептидов) в смеси аминокислот удалось надежно зафиксировать лишь при использовании повышенной температуры (110–120 °C) в безводной среде (Fox and Middlebrook, 1954). Осуществление процесса в безводной среде обусловлено тем, что при образовании пептидной связи освобождается молекула воды. Поэтому в соответствии с законом действующих масс в водной среде равновесие реакции смещено в сторону разрыва связи, сопровождающегося связыванием молекулы воды (гидролиз). Однако позже было показано, что при ориентированной сорбции реагентов на твердой поверхности реакции, в том числе образование пептидной связи, осуществляются в значительно более мягких условиях. Большое значение могло иметь присутствие веществ, способных связывать воду, как карбодиимид, цианоген и др. Недавно был продемонстрирован способ образования пептидов из аминокислот в присутствии карбонил сульфида (COS). Примечательно, что этот процесс эффективен в водной среде при комнатной температуре (Leman et al., 2004). Авторы подчеркивают, что COS является распространенным вулканическим газом, и, следовательно, этот процесс мог осуществляться в предбиологический период вблизи выходов лавы и горячих источников, а также на океаническом дне. В целом модельные эксперименты подтвердили практическую осуществимость химической эволюции, т. е. добиологического образования сложных органических молекул, из которых и могли быть сформированы первые живые организмы. Только позже, уже в ходе клеточной эволюции по мере освоения клетками все более сложных органических синтезов необходимость в поступлении соответствующих продуктов из среды отпала.

Читать дальше
Тёмная тема

Шрифт:

Сбросить

Интервал:

Закладка:

Сделать


Марк Мосевицкий читать все книги автора по порядку

Марк Мосевицкий - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




Распространенность жизни и уникальность разума? отзывы


Отзывы читателей о книге Распространенность жизни и уникальность разума?, автор: Марк Мосевицкий. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
Большинство книг на сайте опубликовано легально на правах партнёрской программы ЛитРес. Если Ваша книга была опубликована с нарушениями авторских прав, пожалуйста, направьте Вашу жалобу на PGEgaHJlZj0ibWFpbHRvOmFidXNlQGxpYmtpbmcucnUiIHJlbD0ibm9mb2xsb3ciPmFidXNlQGxpYmtpbmcucnU8L2E+ или заполните форму обратной связи.
img img img img img