Леонард Сасскинд - Битва при черной дыре. Мое сражение со Стивеном Хокингом за мир, безопасный для квантовой механики

Тут можно читать онлайн Леонард Сасскинд - Битва при черной дыре. Мое сражение со Стивеном Хокингом за мир, безопасный для квантовой механики - бесплатно ознакомительный отрывок. Жанр: Прочая научная литература, издательство Питер, год 2013. Здесь Вы можете читать ознакомительный отрывок из книги онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.
  • Название:
    Битва при черной дыре. Мое сражение со Стивеном Хокингом за мир, безопасный для квантовой механики
  • Автор:
  • Жанр:
  • Издательство:
    Питер
  • Год:
    2013
  • Город:
    СПб
  • ISBN:
    978-5-496-00395-7
  • Рейтинг:
    3.2/5. Голосов: 101
  • Избранное:
    Добавить в избранное
  • Отзывы:
  • Ваша оценка:
    • 60
    • 1
    • 2
    • 3
    • 4
    • 5

Леонард Сасскинд - Битва при черной дыре. Мое сражение со Стивеном Хокингом за мир, безопасный для квантовой механики краткое содержание

Битва при черной дыре. Мое сражение со Стивеном Хокингом за мир, безопасный для квантовой механики - описание и краткое содержание, автор Леонард Сасскинд, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru

Что происходит, когда объект падает в черную дыру? Исчезает ли он бесследно?

Около тридцати лет назад один из ведущих исследователей феномена черных дыр, ныне знаменитый британский физик Стивен Хокинг заявил, что именно так и происходит. Но оказывается, такой ответ ставит под угрозу все, что мы знаем о физике и фундаментальных законах Вселенной. Автор этой книги, выдающийся американский физик Леонард Сасскинд много лет полемизировал со Стивеном Хокингом о природе черных дыр, пока, наконец, в 2004 году, тот не признал свою ошибку.

Блестящая и на редкость легко читаемая книга рассказывает захватывающую историю этого многолетнего научного противостояния, радикально изменившего взгляд физиков на природу реальности. Новая парадигма привела к ошеломляющему выводу о том, что все в нашем мире — эта книга, ваш дом, вы сами — лишь своеобразная голограмма, проецирующаяся с краев Вселенной.

Книга включена в «Библиотеку Фонда «Династия».

Фонд некоммерческих программ «Династия» основан в 2001 году Дмитрием Борисовичем Зиминым, почетным президентом компании «Вымпелком». Приоритетные направления деятельности Фонда — поддержка фундаментальной науки и образования в России, популяризация науки и просвещение. «Библиотека Фонда «Династия» — проект Фонда по изданию современных научно-популярных книг, отобранных экспертами-учеными.

Книга, которую вы держите в руках, выпущена под эгидой этого проекта.

Более подробную информацию о Фонде «Династия» вы найдете по адресу www.dynastyfdn.com

Битва при черной дыре. Мое сражение со Стивеном Хокингом за мир, безопасный для квантовой механики - читать онлайн бесплатно ознакомительный отрывок

Битва при черной дыре. Мое сражение со Стивеном Хокингом за мир, безопасный для квантовой механики - читать книгу онлайн бесплатно (ознакомительный отрывок), автор Леонард Сасскинд
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Лайнландцам понадобилось название для нового направления, и они обозначили его Y. В отличие от Х, вдоль Y нельзя далеко уйти, не вернувшись в исходную точку. Лайнландские математики говорят, что направление Y компактифицировано.

Цилиндр, изображенный выше, получается при добавлении дополнительного свернутого измерения к исходному одномерному миру. Добавление шести дополнительных измерений к миру, в котором уже есть три обычных, выходит далеко за пределы способностей человеческого мозга к визуализации. Физиков и математиков отличает от остальных людей не то, что они мутанты, способные представить себе любое число измерений, а скорее то, что они прошли тяжелую математическую переподготовку, опять же, перепрошивающую сознание, — чтобы научиться «видеть» дополнительные измерения.

Единственное дополнительное измерение не обеспечивает достаточного разнообразия возможностей. Перемещение в свернутом направлении будет подобно движению по кругу без осознания этого. Но уже два дополнительных измерения открывают бесконечное множество новых возможностей. Два измерения могут образовать сферу.

тор поверхность бублика бублик с двумя или тремя дырками или даже - фото 154

тор (поверхность бублика),

бублик с двумя или тремя дырками или даже причудливое пространство - фото 155

бублик с двумя или тремя дырками,

или даже причудливое пространство называемое бутылкой Клейна Изображение - фото 156

или даже причудливое пространство, называемое бутылкой Клейна.

Изображение двух дополнительных измерений не составляет больших проблем мы - фото 157

Изображение двух дополнительных измерений не составляет больших проблем (мы только что сделали это), но с ростом числа измерений визуализировать их становится все труднее и труднее. К тому моменту когда мы достигнем шести дополнительных измерений, необходимых для теории струн, визуализация без обращения к математике становится безнадежным делом. Особые геометрические пространства, которые струнные теоретики используют для компактификации шести дополнительных измерений, называются многообразиями Калаби — Яу. Их насчитываются миллионы, и среди них нет двух одинаковых. Многообразия Калаби — Яу исключительно сложны, с сотнями шестимерных дырок от бубликов и прочими невообразимыми кренделями. Тем не менее математики создают их изображения, нарезая на слои меньшей размерности, подобно диаграммам вложения [135] См. главу 3. — Примеч. перев. . Вот изображение двумерного среза типичного пространства Калаби — Яу.

Я попробую дать вам некоторое представление о том на что похоже обычное - фото 158

Я попробую дать вам некоторое представление о том, на что похоже обычное пространство, когда к каждой его точке добавлено шестимерное многообразие Калаби — Яу. Сначала посмотрите на обычные измерения, в которых могут двигаться такие большие объекты, как люди. (Я нарисовал его двумерным, но вы уже должны научиться достраивать третье измерение в воображении.)

В каждой точке трехмерного пространства имеется также шесть других свернутых - фото 159

В каждой точке трехмерного пространства имеется также шесть других свернутых измерений, в которых могут перемещаться очень маленькие объекты. По необходимости я рисую пространства Калаби — Яу отдельно друг от друга, но вы должны представлять себе их в каждой точке обычного пространства.

Теперь вернемся к струнам Обычный жгут от эспандера можно растягивать в разных - фото 160

Теперь вернемся к струнам. Обычный жгут от эспандера можно растягивать в разных направлениях, например вдоль оси восток — запад, или север — юг, или верх — низ. Его можно растягивать под разными углами, скажем, на север-северо-запад с 10-градусным наклоном к горизонту. Но если есть дополнительные измерения, число возможностей многократно возрастает. В частности, струны Могут растягиваться вдоль свернутых измерений. Замкнутая струна Может опоясывать пространство Калаби — Яу один или несколько Раз, но при этом вовсе не быть растянутой в обычных пространственных направлениях.

Позвольте мне еще немного усложнить ситуацию Струна может опоясывать свернутое - фото 161

Позвольте мне еще немного усложнить ситуацию. Струна может опоясывать свернутое пространство и в то же самое время извиваться, подобно змее, так что изгибы прокатываются по струне.

Чтобы натянуть струну вокруг свернутого измерения и заставить ее вибрировать - фото 162

Чтобы натянуть струну вокруг свернутого измерения и заставить ее вибрировать, требуется энергия, так что частицы, описываемые такими струнами, будут тяжелее обычных.

Силы

Наша Вселенная — это мир не только пространства, времени и частиц, но также и сил. Электрические силы, действующие между заряженными частицами, могут перемещать кусочки бумаги и пылинки (скажем, за счет статического электричества), но более важно, что эти силы удерживают электроны на их орбитах вокруг атомных ядер. Гравитационные силы, действующие между Землей и Солнцем, удерживают на орбите Землю.

Все силы в конечном счете связаны с микроскопическими силами, действующими между отдельными частицами. Но откуда берутся эти межчастичные силы? Для Ньютона универсальная силапритяжения, действующая между массами, была просто физическим фактом — в действительности он смог ее только описать, но не объяснить. Однако в течение девятнадцатого и двадцатого столетий такие физики, как Майкл Фарадей, Джеймс Клерк Максвелл, Альберт Эйнштейн и Ричард Фейнман, сделали блестящие открытия, объяснявшие силы через стоящие за ними более фундаментальные концепции.

Согласно Фарадею и Максвеллу, электрические заряды притягиваются и отталкиваются не непосредственно; в пространстве между зарядами существует посредник, передающий взаимодействие. Представьте себе «Слинки» — эту ленивую игрушечную пружинку, — натянутую между двумя разнесенными на некоторое расстояние шарами.

Каждый из шаров подвергается воздействию силы только со стороны присоединенного - фото 163

Каждый из шаров подвергается воздействию силы только со стороны присоединенного к нему конца «Слинки». Затем каждый фрагмент «Слинки» воздействует на своих соседей. Сила передается по «Слинки», пока не передаст натяжение к объекту на другом конце. Может казаться, что два объекта притягиваются друг к другу, но это иллюзия, созданная посредничающей между ними «Слинки».

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Леонард Сасскинд читать все книги автора по порядку

Леонард Сасскинд - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




Битва при черной дыре. Мое сражение со Стивеном Хокингом за мир, безопасный для квантовой механики отзывы


Отзывы читателей о книге Битва при черной дыре. Мое сражение со Стивеном Хокингом за мир, безопасный для квантовой механики, автор: Леонард Сасскинд. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x