Терри Пратчетт - Наука Плоского Мира III: Часы Дарвина

Тут можно читать онлайн Терри Пратчетт - Наука Плоского Мира III: Часы Дарвина - бесплатно ознакомительный отрывок. Жанр: Прочая научная литература, год 2006. Здесь Вы можете читать ознакомительный отрывок из книги онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.

Терри Пратчетт - Наука Плоского Мира III: Часы Дарвина краткое содержание

Наука Плоского Мира III: Часы Дарвина - описание и краткое содержание, автор Терри Пратчетт, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru

Книга «Часы Дарвина» повествует о викторианском обществе, которого никогда не было — ну, однажды вмешались волшебники и его не стало..

Наука Плоского Мира III: Часы Дарвина - читать онлайн бесплатно ознакомительный отрывок

Наука Плоского Мира III: Часы Дарвина - читать книгу онлайн бесплатно (ознакомительный отрывок), автор Терри Пратчетт
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Порядок, в котором вещи будут пронумерованы абсолютно неважен. Но нельзя соотносить вторник сразу и с фиолетовым, и с зеленым, или зеленый и со вторником, и с воскресеньем. Или пропускать некоторые элементы.

К примеру, вы попадете в беду, если захотите соотнести дни недели со слонами, на которых стоит Диск: воскресенье- Берилия, понедельник- Тьюбул, вторник- Великий Т’Фон, среда-Джеракин, а четверг?

Точнее, у вас кончатся слоны. Даже если мифический пятый слон возьмет на себя четверг.

В чем разница? Ну, в неделе семь дней, а в спектре семь цветов, поэтому вы можете соотнести эти два множества. А вот слонов у вас всего четыре (ну, может, пять), а четыре или пять никак нельзя приравнять к семи.

Глубокий философский смысл здесь в том, что вам не нужно знать чисел четыре, пять и семь, чтобы обнаружить что нет никакого способа соотнести эти два множества. Разговор о величине цифр подобен размахиванию кулаками после драки. Соотнесение логически первостепенно по отношению к счёту. [64] Именно поэтому даже сегодня, когда лоск «новой математики» оказывается стёртым до дыр, маленькие дети на уроках математики часами рисуют волнообразные линии между кружками содержащими картинки кошечек и кружками с бабочками деловито соотнося эти два множества. Ни дети, ни учителя не имеют ни малейшего понятия о том, зачем они это делают. Фактически они делают это потому что десятки лет назад куча чокнутых педагогов не могли понять, что потому что одно логически предшествует другому, то разумно было бы учить детей в таком порядке. Настоящие математики, которые знают что всегда нужно крыть крышу дома до того как построить фундамент, смотрят на это с ужасом.

Пока что ничего нового. Но соотнесение имеет смыл не только для конечных множеств, но и для бесконечных. Вы даже можете соотнести четные числа с остальными:

2 1

4 2

6 3

8 4

10 5 и так далее. Подобные соответствия объясняют происходящее в отеле Гилберта. Вот как у Гилберта появилась идея (помните, крыша вперед фундамента).

Какое же кардинальное число соответствует всем числам (и, соответственно, любого множества, которое можно с ним соотнести)? Классическое название это «бесконечность». Однако Кантор, будучи осторожным, предпочел название, которое не так сильно цепляло внимание, поэтому в 1883 году он дал ему имя «Алеф» — по первой буква еврейского алфавита, и подписал под ней небольшой ноль, по причинам, которые выяснились довольно скоро: Алеф-нуль.

Он знал что именно он начал:

«Я точно знаю, что выбрав такую процедуру я противопоставил свою позицию широко распространённому мнению относительно бесконечности в математике и текущим взглядам на природу числа. " Он получил то, что и ожидал: много критики и особенно от Леопольда Кроникера. «Бог создал целые числа: всё остальное — дело рук человеческих» — заявлял Кроникер.

Сейчас, правда, большинство их нас думает, что и целые числа создал человек.

Зачем тогда вводить новый символ? (тем более еврейский). Если бы по мнению Кантора существовала только одна бесконечность, он смело назвал бы её просто «бесконечность» и использовал бы классический символ перевёрнутой восьмёрки. Он быстро понял, что согласно его точки зрения, могут существовать и другие бесконечности, а он вполне вправе назвать их альф-один, алеф-два, алеф-три и так далее.

Как же могут существовать другие бесконечности? Это является большим и неожиданным последствием неразвитой идеи соотнесения. Чтобы объяснить как это происходит, в каком-то смысле нам нужно будет поговорить о действительно больших числах. Конечных и бесконечных. Чтобы убедить вас в том, что все они белые и пушистые мы введем простую условность.

Если n обозначает любое число любого размера, тогда n-плекс обозначает 10 в степени n, что означает единицу с n нулями. Так что 10 в степени 2 это 100, 10 в шестой степени это 1000 000, миллион; 10 в девятой степени это миллиард. Когда степень равна 100, то мы получает гугл. Таким образом гуглплекс можно описать как 10 в степени гугл.

Подобно Кантору можно легко представить 10 в степени бесконечность. Но давайте быть точнее: как быть с алеф в степени ноль? Что такое 10 в степени алеф-ноль?

Примечательно что оно имеет совершенно разумное значение. Это кардинальное число множества всех действительных чисел — чисел которые могут быть представлены в виде бесконечной десятичной дроби. Вспомним эфебского философа Фтагонала, который знаменит высказыванием «Диаметр делит окружность. тогда соотношение должно равняться трём. Но так ли это? Нет. Три, запятая, один, четыре и куча других цифр после запятой. И нет числа этим чёртовым числам.» Конечно это отсылка к самому знаменитому из вещественных чисел — числу Пи, которое нуждается в бесконечном количестве знаков после запятой, чтобы оценить его точность. Округлённое до одного знака после запятой, оно равно 3,1. Округлённое до двух знаков после запятой оно равно 3,14. До трёх — 3,141. Так до бесконечности.

Кроме Пи, существует множество других вещественных чисел. Насколько велико фазовое пространство всех вещественных чисел?

Подумайте о знаках после запятой. Если мы рассматривает один знак, то для него есть 10 возможных вероятностей: любое из чисел от 0 до 9. Если мы рассматриваем два знака после запятой, то для него есть 100 вероятностей: от 00 до 99. Если мы рассматриваем три знака после запятой, тогда для него существует 1000 вероятностей: от 000 до 999.

Закономерность понятна. Если мы рассматриваем n знаков после запятой, тогда существует 10 в степени n вероятностей. А это n-плекс.

Если знаки после запятой могут продолжаться «вечно», первым делом нужно спросить какого вида «вечность» имеется ввиду. И ответом является алеф-ноль Кантора, потому что в нём есть первый знак после запятой, второй, третий. эти места соответствую целым числам. Так что если всё множество чисел n равно аллеф-нолю, мы обнаружим, что кардинальное число этого множества всех вещественных чисел (не принимая внимания знаки после запятой) равно 10 в степени алеф-ноль. То же самое верно в силу более сложных причин, если мы не будем учитывать все знаки после запятой. [65] Если вкратце: поскольку всё что находится до запятой является целым числом, так что с учётом этого умножаем ответ на алеф-ноль. Теперь алеф-ноль Х 10 в степени алеф-ноль = 10 в степени алеф-ноль Х 10 в степени алеф-ноль, и что меньше или равняется квадрату десяти в степени алеф-ноль. Понятно?

Всё отлично, но предположительно 10 в степени алеф-ноль окажется очень хорошо замаскированным алеф-нолём, поскольку все бесконечности должны быть равны? Нет, они не равны. Кантор доказал, что нельзя соотносить вещественный и целые числа. Так что 10 в степени алеф-ноль больше чем алеф-ноль.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Терри Пратчетт читать все книги автора по порядку

Терри Пратчетт - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




Наука Плоского Мира III: Часы Дарвина отзывы


Отзывы читателей о книге Наука Плоского Мира III: Часы Дарвина, автор: Терри Пратчетт. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x