Себастьян Сеунг - Коннектом. Как мозг делает нас тем, что мы есть
- Название:Коннектом. Как мозг делает нас тем, что мы есть
- Автор:
- Жанр:
- Издательство:Литагент «БИНОМ. Лаборатория знаний»a493f192-47a0-11e3-b656-0025905a06ea
- Год:2014
- Город:Москва
- ISBN:978-5-9963-2672-3
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Себастьян Сеунг - Коннектом. Как мозг делает нас тем, что мы есть краткое содержание
Что такое человек? Какую роль в формировании личности играют гены, а какую – процессы, происходящие в нашем мозге? Сегодня ученые считают, что личность и интеллект определяются коннектомом, совокупностью связей между нейронами. Описание коннектома человека – невероятно сложная задача, ее решение станет не менее важным этапом в развитии науки, чем расшифровка генома, недаром в 2009 году Национальный институт здоровья США запустил специальный проект – «Коннектом человека», в котором сегодня участвуют уже ученые многих стран.
В своей книге Себастьян Сеунг, известный американский ученый, профессор компьютерной нейробиологии Массачусетского технологического института, рассказывает о самых последних результатах, полученных на пути изучения коннектома человека, и о том, зачем нам это все нужно.
Коннектом. Как мозг делает нас тем, что мы есть - читать онлайн бесплатно ознакомительный отрывок
Интервал:
Закладка:
Ни те, ни другие методы не подходят под критерии ГЭР, подразумевающие справедливость и надежность. Можно предположить даже, что таких методов вовсе не существует. Профессиональные инвесторы ненавидят такие заявления, предпочитая думать, что они преуспевают благодаря собственной сметливости. Но ГЭР уверяет: либо им повезло, либо они, скажем уж прямо, оказались не очень-то чистоплотны в делах.
Эмпирические доводы за и против ГЭР многообразны и сложны, но ее теоретическое обоснование достаточно просто. Если новая информация указывает на то, что акции поднимутся в цене, то первые же инвесторы, узнавшие эти сведения, волей-неволей создадут на рынке ситуацию, когда эти акции будут продаваться дороже. А следовательно, заключает ГЭР, на рынке попросту не останется выгодных инвестиционных возможностей, точно так же, как вы никогда (ну, почти никогда) не увидите двадцатидолларовую бумажку, спокойно валяющуюся на тротуаре.
При чем же тут нейронаука? Вот вам еще один анекдот. «Слушай, я тут придумал гениальный эксперимент!» – говорит один ученый другому. «Не будь идиотом, – отвечает тот. – Если бы такой эксперимент можно было провести, кто-нибудь уже давно бы это сделал». В этом диалоге есть доля истины. Научный мир полон умных и трудолюбивых людей. Гениальные эксперименты, как и двадцатидолларовые банкноты, на дороге не валяются. Вокруг рыщет масса ученых, и почти все из возможных гениальных экспериментов уже проведены. Я даже готов предложить гипотезу эффективности науки (ГЭН): не существует справедливого и надежного научного метода, который позволил бы превзойти средние результаты в науке.
Как же ученым удается совершать по-настоящему великие открытия? Александр Флеминг открыл пенициллин (и дал ему название) после того, как обнаружил, что одна из бактериальных культур в его лаборатории случайно оказалась зараженной плесневым грибком, вырабатывающим этот антибиотик. Революционные прорывы такого рода – во многом плод счастливого стечения обстоятельств. Если вы ищете более надежный метод, поищите в области «нечестного». И тут вам помогут технологии наблюдения и измерения.
Прослышав, что в Голландии изобрели телескоп, Галилей быстренько смастерил собственный. Он экспериментировал с различными линзами, научился самостоятельно шлифовать стекло и в конце концов стал конструировать лучшие телескопы в тогдашнем мире. Эта деятельность позволила ему занять уникальное положение, благодаря которому он мог совершать астрономические открытия эффективнее, чем коллеги: ведь у него появилась возможность изучать небосвод с помощью прибора, которого у них не было. Если вы – ученый, покупающий необходимые для работы приборы, вы можете обойти своих конкурентов, добиваясь большего финансирования, чем они. Но еще сильнее вы их обгоните, если сами сконструируете прибор, который не купить ни за какие деньги.
Допустим, вы придумали гениальный эксперимент. Как узнать, осуществил его уже кто-нибудь или нет? Справьтесь в литературе. Если никто его не делал, лучше хорошенько подумать, отчего это так. Может быть, это не такая уж и гениальная идея. А может быть, его не проводили лишь потому, что тогда не существовало нужных технологий. И если вам посчастливится получить доступ к соответствующей аппаратуре, то вы, быть может, сумеете провести этот эксперимент первым в истории.
Моя гипотеза эффективности науки объясняет, почему некоторые ученые проводят основную часть времени, разрабатывая новые технологии, а не полагаясь на те, которые они могут приобрести за деньги. Таким путем они пытаются добиться «нечестного преимущества». В своем трактате «Новый органон» (1620) Фрэнсис Бэкон писал:
Было бы неразумной фантазией утверждать, будто нечто такое, что еще никогда не совершалось, может быть совершено без помощи средств, каковые еще не были никогда испробованы.
В таком утверждении кроется противоречие.
Я бы усилил эту максиму:
Стоящие вещи, которых пока никто не сделал, можно сделать лишь с помощью средств, которые пока не существуют.
Именно в период возникновения таких новых средств – когда изобретаются новые технологии – мы наблюдаем революционные скачки в науке.
Чтобы находить коннектомы, нам нужно создать устройства, позволяющие получать четкие изображения нейронов и синапсов в обширном поле зрения. Это откроет новую главу в истории нейронауки, которую, быть может, лучше рассматривать не как ряд великих идей, а как череду великих открытий, каждое из которых позволяло перескочить некогда считавшийся непреодолимым барьер, мешавший наблюдать те или иные свойства мозга. Сегодня утверждение, что мозг состоит из нейронов, кажется банальным, однако путь к этой идее оказался весьма тернист. По элементарной причине – долгое время нейроны попросту не удавалось разглядеть.
В 1677 году Антони ван Левенгук, голландский купец, торговавший сукном, а позже ставший ученым, первым в мире увидел живой сперматозоид. Левенгук, совершив свое открытие с помощью самодельного микроскопа, не до конца осознал его важность: он не доказал, что именно сперматозоиды (а не семенная жидкость, в которой они плавают) являются репродуктивными агентами. И он понятия не имел о процессе оплодотворения, в ходе которого соединяются яйцеклетка и сперматозоид. Однако Левенгук вымостил путь для своих последователей, и в этом смысле его работа знаменует собой начало новой эпохи в науке.
Три года спустя Левенгук рассматривал в свой микроскоп каплю озерной воды. Он увидел движущиеся в ней крошечные объекты и решил, что они живые. Ученый нарек их анималькулами («маленькими зверьками») и написал о них в лондонское Королевское научное общество. Ныне мы привыкли к мысли о существовании микроорганизмов, и нам трудно вообразить, как потрясли они современников великого голландца. В то время сообщения Левенгука сочли столь фантастическими, что его даже заподозрили в фальсификации научных результатов. Чтобы развеять эти опасения, он направил в Королевское научное общество письма с «показаниями» восьми свидетелей, в том числе трех священников, адвоката и врача. Спустя несколько лет его открытие наконец признали, а затем Левенгук был удостоен высокой чести – он стал членом Королевского общества.
Иногда Левенгука именуют отцом микробиологии. В XIX веке эта область науки приобрела громадное практическое значение: именно тогда Луи Пастер и Роберт Кох продемонстрировали, что микробы могут служить причиной болезней. Микробиология, в свою очередь, сыграла решающую роль в развитии клеточной теории, краеугольного камня современной биологии. Согласно основным положениям этой теории, сформулированным еще в XIX столетии, все организмы состоят из клеток. Микроорганизмы же состоят всего из одной клетки.
Читать дальшеИнтервал:
Закладка: