Себастьян Сеунг - Коннектом. Как мозг делает нас тем, что мы есть
- Название:Коннектом. Как мозг делает нас тем, что мы есть
- Автор:
- Жанр:
- Издательство:Литагент «БИНОМ. Лаборатория знаний»a493f192-47a0-11e3-b656-0025905a06ea
- Год:2014
- Город:Москва
- ISBN:978-5-9963-2672-3
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Себастьян Сеунг - Коннектом. Как мозг делает нас тем, что мы есть краткое содержание
Что такое человек? Какую роль в формировании личности играют гены, а какую – процессы, происходящие в нашем мозге? Сегодня ученые считают, что личность и интеллект определяются коннектомом, совокупностью связей между нейронами. Описание коннектома человека – невероятно сложная задача, ее решение станет не менее важным этапом в развитии науки, чем расшифровка генома, недаром в 2009 году Национальный институт здоровья США запустил специальный проект – «Коннектом человека», в котором сегодня участвуют уже ученые многих стран.
В своей книге Себастьян Сеунг, известный американский ученый, профессор компьютерной нейробиологии Массачусетского технологического института, рассказывает о самых последних результатах, полученных на пути изучения коннектома человека, и о том, зачем нам это все нужно.
Коннектом. Как мозг делает нас тем, что мы есть - читать онлайн бесплатно ознакомительный отрывок
Интервал:
Закладка:

Рис. 47.Синаптические цепочки – запутанная ( слева ) и распутанная ( справа )
Допустим, мы преуспели в распутывании коннектома HVC. Возможно, получив соответствующую цепочку, мы сумеем догадаться, в каком порядке нейроны дают импульсы во время песни. В каком-то смысле это и будет чтением птичьей памяти, содержащей эту песенку, ведь мы сумеем определить последовательность импульсов, которая всякий раз «проигрывается» в HVC, когда пташка поет.
Как подтвердить, что наше прочтение верно? Вентрис с Чедвиком убедили мир, что они правильно расшифровали линейное письмо Б, поскольку в результате получился осмысленный текст. Если бы их расшифровка оказалась неверной, декодированный текст являл бы собой какую-нибудь абракадабру. Более надежную проверку на внутреннюю согласованность и непротиворечивость элементов текста можно было бы провести, понаблюдав за людьми, которые написали эти таблички, и поговорив с ними. Но неосуществимость путешествий во времени мешает нам это сделать.
А если бы распутывание коннектома HVC позволило нам выявить синаптическую цепочку, мы бы обрели уверенность в том, что правильно считываем информацию из HVC. В отличие от Вентриса и Чедвика мы можем получить более убедительные доказательства, не прибегая к помощи машины времени. Предположим, еще какой-нибудь нейробиолог станет хронометрировать пики нейронов HVC, но не сообщит нам результат этих измерений, чтобы проверить, сумеем ли мы угадать эти данные сами. Мы найдем коннектом HVC и прочтем его, чтобы попытаться определить, в какое время нейроны давали импульсы. Экзаменатор сравнит наши догадки с подлинным хронометражем нервных импульсов. Если то и другое совпадет, значит, наше прочтение коннектома оказалось верным.
Чтобы прохронометрировать импульсы нейронов HVC, экзаменатор должен обратиться к химикам, которые изобрели массу способов окрашивать нейроны так, чтобы под микроскопом они являли собой мигающие огоньки – светлея, когда возникает пик, и темнея, когда нейрон «умолкает». Изображения, полученные с помощью оптического микроскопа, также сообщат нам о месторасположении тел нейронов HVC. Позже эти места можно будет сопоставить с теми, где находятся тела нервных клеток при изучении мертвого мозга под электронным микроскопом. Установив связь между тем и другим, экзаменатор сможет сравнить реальный хронометраж пиков HVC-нейронов с тем, который мы выведем из чтения коннектома.
Разумеется, всегда есть вероятность, что нам не удастся распутать HVC-коннектом. Может статься, мы не сумеем расположить нейроны в таком порядке, чтобы синапсы подчинялись последовательному правилу связей. Иными словами, в таком случае вне зависимости от того, как мы располагаем нейроны в цепочке, всегда найдется множество связей, которые будут чересчур высовываться назад или вперед. А значит, тогда можно будет сделать вывод, что HVC-коннектом, скорее всего, устроен не по принципу синаптической цепочки. Но такая неудача тоже станет важным шагом вперед. Чтобы наука развивалась, полезно не только подтверждать предлагаемые модели, но и отвергать какие-то из них.
Если же окажется, что коннектом HVC все-таки устроен по принципу синаптической цепочки, это будет свидетельством того, что данный коннектом помогает птичке помнить свою песенку. Но как такие воспоминания вообще сохраняются? Некоторые нейробиологи-теоретики предположили, что HVC-нейроны молодых самцов первоначально активируются случайными сигналами из какого-то другого источника. Некоторые из возникших цепочек случайных связей укрепляются по хеббовскому принципу. Такие «избранные» цепочки начинают возникать чаще, тем самым усиливаясь всё больше. И наконец, одна-единственная цепочка становится настолько сильной, что начинает доминировать над всеми остальными. Эта цепочка связей соответствует той «окончательной» синаптической цепи, которую мы ожидаем найти у взрослых самцов.
Из этого предположения следует, что память о песенке сохраняется благодаря изменению синаптического веса. Сила синапсов меняется, однако новые синапсы не возникают, а старые – не уничтожаются. «Невзвешенный» коннектом, не учитывающий информацию о силе синапсов, вообще не будет содержать никаких сведений об информации, находящейся в памяти. По нему невозможно будет вычислить хронометраж нейронных пиков. Доступен прочтению лишь взвешенный коннектом, поскольку лишь сильные синапсы организованы в цепочку. Иными словами, коннектом должен включать в себя силу синапсов, если мы хотим этот коннектом расшифровать. Скорее всего, окажется возможным оценить силу синапсов по их облику под электронным микроскопом. Как я уже отмечал, ученые полагают, что синапсы делаются более крупными, когда они становятся сильнее, так что в данном случае размер коррелирует с силой. Грядущие исследования должны показать нам, насколько точен подобный метод оценки синаптической силы.
А возможно, в сохранении песни в памяти играет роль и рекомбинация связей. Может быть, синапсы, не участвующие в синаптической цепочке, слабеют по мере того, как птица учится петь, и в конечном счете отмирают. Если рекомбинация связей действительно имеет здесь значение, то нам, возможно, удастся прочесть даже невзвешенный коннектом. Пытаясь расшифровать и невзвешенный, и взвешенный HVC-коннектом, мы, может статься, сумеем провести различие между теорией памяти, основанной лишь на ИВС, и теорией, учитывающие и ИВС, и рекомбинацию связей.
Нейробиологи предполагают, что из четырех принципов коннектомных изменений в сохранении воспоминаний могут играть роль и остальные два – переподключение и регенерация. Однако для того и для другого пока получено слишком мало эмпирических доказательств. Фернандо Ноттебом и его сотрудники изучали регенерацию на примере мозга канареек и других певчих птиц. Ученые продемонстрировали, что в те месяцы года, когда канарейки не поют, их HVC «усыхает», поскольку нейроны в нем самоуничтожаются. Но когда сезон песен наступает снова, HVC увеличивается благодаря возникновению новых нейронов. Исследования регенерации нейронов, проведенные Ноттебомом, сыграли важную роль в истории науки, вновь возбудив интерес специалистов к данному предмету, однако реальные механизмы такой регенерации по-прежнему остаются неясными.
Этот вопрос можно исследовать различными интересными путями – если только верна модель HVC, основанная на синаптических цепочках. Продолжает ли спящая синаптическая цепочка хранить в памяти песенку, когда брачный сезон кончается? А когда в HVC появляются новые нейроны, они встраиваются в эту цепочку? И если да, то каким образом? Согласно теории нейронного дарвинизма, новосозданные нейроны будут связаны с собратьями случайным образом. Но это предсказание, вероятно, можно эмпирически проверить в рамках коннектомики, при помощи специального метода окрашивания, помечающего лишь новые нейроны.
Читать дальшеИнтервал:
Закладка: