Себастьян Сеунг - Коннектом. Как мозг делает нас тем, что мы есть
- Название:Коннектом. Как мозг делает нас тем, что мы есть
- Автор:
- Жанр:
- Издательство:Литагент «БИНОМ. Лаборатория знаний»a493f192-47a0-11e3-b656-0025905a06ea
- Год:2014
- Город:Москва
- ISBN:978-5-9963-2672-3
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Себастьян Сеунг - Коннектом. Как мозг делает нас тем, что мы есть краткое содержание
Что такое человек? Какую роль в формировании личности играют гены, а какую – процессы, происходящие в нашем мозге? Сегодня ученые считают, что личность и интеллект определяются коннектомом, совокупностью связей между нейронами. Описание коннектома человека – невероятно сложная задача, ее решение станет не менее важным этапом в развитии науки, чем расшифровка генома, недаром в 2009 году Национальный институт здоровья США запустил специальный проект – «Коннектом человека», в котором сегодня участвуют уже ученые многих стран.
В своей книге Себастьян Сеунг, известный американский ученый, профессор компьютерной нейробиологии Массачусетского технологического института, рассказывает о самых последних результатах, полученных на пути изучения коннектома человека, и о том, зачем нам это все нужно.
Коннектом. Как мозг делает нас тем, что мы есть - читать онлайн бесплатно ознакомительный отрывок
Интервал:
Закладка:
… трудно посылать их в строго определенную мишень. У большинства биологических систем передача химических сигналов основана на специфичности молекулярного связывания (механизм «ключ-замок»). Этого недостаточно, чтобы предотвратить взаимные помехи между синапсами, поскольку многие синапсы используют один и тот же нейротрансмиттер.
… свести к минимуму эти взаимные помехи … Мы не говорим, что эти помехи нулевые. Известно, что некое избыточное количество нейротрансмиттера всё же иногда выделяется. В некоторых случаях оно играет важную роль в функционировании мозга.
…« самым дорогим в мире диванчиком на двоих ». Russell, 1978.
… 67 миль переплетенных проводов … Kolodzey, 1981.
… облекли изоляцией … Небольшие взаимные помехи все-таки могут возникать – из-за электрических полей, проникающих сквозь изоляцию.
… миллионы миль тончайших нейритов… Объем мозга – свыше миллиона кубических миллиметров, значительную часть этого объема занимает кора. Один кубический миллиметр коры, по данным некоторых исследователей, содержит несколько миль нейритов (Braitenberg, Schüz, 1998).
Аксон – одиночный отросток, длинный и тонкий … Это описание годится для весьма распространенного типа нейронов – пирамидального нейрона коры головного мозга. Однако есть много других типов нейронов, и по виду все они отличаются. Для некоторых типов нейронов различие между дендритом и аксоном даже оказывается несущественным, особенно в нервных системах беспозвоночных. У нейронов такого типа каждый нейрит и принимает, и посылает синаптические сигналы.
… типичный синапс … Впрочем, есть синапсы, передающие сигнал от аксона к телу клетки, от дендрита к дендриту, от аксона к аксону – практически любые вариации, какие только можно себе представить.
… расслышать сквозь статические помехи. Вслед за телеграфом был изобретен телефон – для аналоговой коммуникации, то есть такой, при которой голос передается без кодирования в электрические импульсы. Но в наше время телефонная система из аналоговой опять стала цифровой, в ней применяется что-то вроде азбуки Морзе. Кодирование и декодирование происходят незаметно для пользователя, поскольку они проделываются быстро и автоматически – электронными схемами, а не живыми телефонистками. Почему наши сложные телефонные аппараты вернулись к методам примитивного телеграфа? Одна из причин в том, что нынешние системы связи должны передавать информацию с максимально возможной скоростью. Скорость ограничена помехами, и оптимальная стратегия – вернуться к цифре.
Рис. 17. Здесь представлен небольшой фрагмент записи электрического сигнала от нейрона гиппокампа подопытной крысы, изучающей лабиринт. Эксперимент описан в: Epztein, Brecht, Lee, 2011.
… проходящий через него нервный импульс вызывает секрецию. Я говорю «проходящий», так как синапсы чаще всего возникают на аксоне, так что нервные импульсы пролетают мимо них. Некоторые синапсы располагаются в тупиках аксонов, так что пики в них и затухают.
… синапс превращает электрический импульс в химический сигнал … О том, как рецепторы трансформируют химические сигналы в электрические, подробно рассказано в главе 6.
… нервный импульс обычно движется по аксону от тела клетки… Это так называемый закон динамической поляризации. Нейробиологи иногда нарушают его при помощи электрической стимуляции порождая пик, который идет в обратную сторону – по аксону к телу клетки. Такое «антидромное» распространение импульса в направлении, противоположном нормальному, доказывает, что передача сигнала по аксону возможна в обоих направлениях.
… и клеток, которые поддерживают их существование. В нервной системе есть и клетки, которые не являются нейронами. Эти клетки называют глиями. Они принадлежат к различным типам и совершенно необходимы для поддержания жизни и нормального функционирования мозга. Я придерживаюсь традиционного сравнения: глиальные клетки – словно съемочная группа, помогающая актерамнейронам, которые снимаются в нашем умственно-психическом фильме. Количество нейронов и глиальных клеток примерно одинаково (Azevedo et al., 2009). Подробнее о глиях см. в: Fields, 2009.
… аксоны нервов создают синапсы с волокнами мышц … Так называемые нейромышечные стыки: термин ввели, чтобы отличать их от обычных синапсов между нейронами.
« Человек способен лишь перемещать предметы …» Sherringt on, 1924.
… 190 станций. Bradley, 1920.
Почти все синапсы слабы. Некоторые радикально настроенные специалисты убеждены, что существует небольшое количество сильных синапсов, играющих важнейшую роль в функционировании мозга.
… отдельный нервный путь обычно не способен сам по себе передать импульс . Хотя синапсы слабы, отдельный нейрон все-таки может заставить другой нейрон породить нервный импульс. Просто нужно, чтобы эти нейроны соединяло большое количество синапсов. Однако на практике такая ситуация встречается, судя по всему, редко.
… все синапсы, созданные аксоном с другими нейронами … На самом-то деле синапсы ведут себя стохастическим образом. При каждом нервном импульсе какой-то случайный набор синапсов отказывается выделять нейротрансмиттер.
… сигналы идут по всем возможным путям … В случае со змеей ваши глаза передают сигнал ногам, а не слюнным железам. В случае с бифштексом – наоборот. В телекоммуникационных сетях такая избирательность достигается с помощью маршрутизации. У каждого послания есть свой адрес, отличающийся от содержания послания. Яркий пример – отправка бумажного письма. Адрес пишется на конверте, а само письмо находится внутри. Та же история с телефоном. Вы набираете номер, чтобы сделать звонок, но «посланием» будет уже не набранный номер, а содержание последующего разговора. Узел коммуникационной сети отправляет входящее послание по нужному маршруту, определяя его адрес и передавая его на узел, который находится ближе к пункту назначения. Послание движется по сети в зависимости от этих решений. Решения принимают сотрудники почтовых контор или многочисленные реле телефонной сети. Даже если бы отдельный нервный путь мог передавать импульсы, не совсем понятно, как нервная система могла бы направлять их по нужному нервному пути, чтобы те достигли пункта назначения. Аксоны не занимаются никакой маршрутизацией, они просто направляют нервные импульсы по всем своим синапсам. Возможно, маршрутизацией занимается еще какая-то часть нейрона, однако вся эта концепция имеет один фундаментальный недостаток: неясно, каким образом ипульс может нести в себе одновременно и послание, и его адрес. Вот почему телекоммуникационные сети – возможно, не лучшее сравнение для мозга. Однако это теоретическое возражение не снимает вероятности того, что послания могут состоять из последовательности пиков, что маршрутизаторами могут выступать группы нейронов и что мозг, рассматриваемый на более глубинном уровне, все-таки окажется похож на телекоммуникационную сеть. Некоторые теоретики упорно считают, что идея маршрутизации помогает лучше разобраться в функционировании мозга (Olshausen, Anderson, Van Essen, 1993).
Читать дальшеИнтервал:
Закладка: