Сергей Вавилов - Глаз и Солнце
- Название:Глаз и Солнце
- Автор:
- Жанр:
- Издательство:Литагент Гельветика56739999-7099-11e4-a31c-002590591ed2
- Год:2015
- Город:Санкт-Петербург
- ISBN:978-5-367-03594-0, 978-5-367-03603-9
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Сергей Вавилов - Глаз и Солнце краткое содержание
Книга «Глаз и Солнце», созданная выдающимся ученым, академиком С. И. Вавиловым (1891–1951), стала классикой научно-популярной литературы. В ней представлена история изучения света, рассказано об устройстве человеческого глаза и свойствах излучения Солнца. Дополняют книгу тексты знаменитого физика Г. Г. Слюсарева, а также суждения мыслителей прошлого – Р. Декарта, Х. Гюйгенса, И. Ньютона, Дж. Беркли, О. Ж. Френеля и И. В. Гёте.
Глаз и Солнце - читать онлайн бесплатно ознакомительный отрывок
Интервал:
Закладка:
Между этими точками полной согласованности и полной противоположности – причем в одних движение отсутствует совершенно, а в других жидкость находится в максимуме колебания – имеется бесконечное множество других промежуточных точек, в которых волновое качание совершается с большей или меньшей энергией, в зависимости от того, будут ли два встречающиеся в них движения приближаться более к полной согласованности или же к полной противоположности.
24. Волны, распространяющиеся внутри упругой жидкости по природе своей хотя и совершенно отличны от только что указанных, показывают при интерференции сходные с ними механические явления, как только начинают приводить в колебательное движение молекулы жидкости. В самом деле, достаточно, чтобы эти движения были колебательными, т. е. перемещали молекулы по очереди в две противоположные стороны, для того чтобы действие одного ряда волн могло быть уничтожено действием другого ряда волн такой же интенсивности. Ибо как только в каждой точке жидкости разность хода между двумя группами волн будет такова, что движениям в одну сторону первой группы будут соответствовать движения в противоположную сторону второй, то движения, если они одинаковой интенсивности, окажутся взаимно нейтрализованы, и молекулы жидкости останутся в покое. Этот результат имеет место всегда, каково бы ни было направление колебательного движения по отношению к направлению распространения волн, лишь бы это последнее было одинаково для обеих групп волн. Так, например, в волнах, которые образуются на поверхности жидкости, колебание совершается в вертикальном направлении, тогда как волны распространяются горизонтально и, следовательно, по направлению, перпендикулярному к первому; в звуковых волнах, наоборот, колебательное движение параллельно направлению распространения, но как те, так и другие подчинены законам интерференции.
Мы говорили сейчас о волнах вообще, которые могут образовываться внутри жидкости; для того чтобы получить ясное представление о способах их распространения, надо заметить, что если жидкость имеет по всем направлениям одинаковую плотность и одинаковую упругость, то возмущение, произведенное в одной точке, должно распространяться во все стороны с одинаковой скоростью; ибо эта скорость распространения (которую не следует смешивать с абсолютною скоростью молекул) зависит исключительно от плотности и упругости жидкости. Отсюда следует, что все возмущенные в один и тот же момент точки должны находиться на сферической поверхности, центр которой – место возникновения возмущения; таким образом, эти волны будут сферическими, тогда как волны на поверхности жидкости будут просто круговыми.
25. Прямые линии, проведенные от центра возмущения к различным точкам этой сферической поверхности, называют лучами; они представляют собой направления, по которым движение распространяется. Вот что подразумевают под звуковыми лучами в акустике и под световыми лучами в той теории, которая приписывает происхождение света колебаниям универсальной жидкости, названной эфиром .
Природа различных элементарных движений, из которых состоит каждая волна, зависит от природы различных движений, составляющих первоначальное возмущение. Самой простой гипотезой об образовании световых волн будет предположение, что небольшие колебания молекул в производящих колебания телах подобны колебаниям маятника, выведенного несколько из положения равновесия; ибо не следует представлять себе молекулы тел закрепленными в своих положениях незыблемым образом, а как бы подвешенными силами, по всем направлениям уравновешивающими друг друга. Но какова бы ни была природа подобных сил, поддерживающих молекулы в таком расположении, до тех пор пока молекулы выводятся из положения равновесия на расстояния лишь небольшие по сравнению со сферой действия сил, ускоряющие силы будут стремиться вернуть их обратно, чтобы тем самым вызвать колебания их по ту и другую сторону около точки равновесия, и эти силы будут приблизительно пропорциональны отклонению; это как раз и составляет закон малых колебаний маятника и всех малых колебаний вообще. Эта гипотеза, на которую указывает аналогия и которая является самой простой по отношению к колебаниям освещающих частиц, должна привести к точным результатам, так как не наблюдается, чтобы оптические свойства света менялись при обстоятельствах, которые, по-видимому, должны были бы принести с собой наибольшую разницу для энергии колебаний.
26. Из гипотезы малых колебаний следует, что скорость, с которой в данный момент движется колеблющаяся молекула, пропорциональна синусу времени, если считать его от начала движения и если взять за окружность круга время, которое требуется молекуле, чтобы вернуться в исходную точку, т. е. продолжительность двух колебаний, одного в одном направлении, другого – в другом. Таков закон, по которому я вычислил формулы, которые служат для определения равнодействующей какого угодно числа волновых групп, интенсивности и относительные положения которых даны.
Не входя в детали этих вычислений, я считаю необходимым показать, каким образом природа волны зависит от характера движения колеблющейся частицы.
Представим себе в жидкости небольшую твердую площадку, которую отклонили из ее положения равновесия и которая возвращается в него обратно под действием силы, пропорциональной отклонению. В начале ее движения ускоряющая сила сообщает ей бесконечно малую скорость, но так как действие силы продолжается, то результаты этого действия складываются, и скорость твердой площадки все время увеличивается вплоть до того момента, когда она достигает положения равновесия, в котором она и осталась бы, если бы не приобрела некоторой скорости; в силу этой скорости она переходит за точку равновесия. Та же самая сила, которая стремится ее вернуть назад и которая действует теперь в направлении, обратном приобретенному движению, непрерывно уменьшает скорость, пока последняя не сведется к нулю; в этот момент продолжающееся действие силы вызовет скорость в обратном направлении, которая возвращает движущееся тело в его положение равновесия. Эта скорость, почти равная нулю в начале обратного движения, возрастает в той же мере, в какой она раньше уменьшалась, вплоть до момента, когда движущееся тело достигает точки равновесия, которую она переходит в силу приобретенного движения; но, начиная с этой точки, движение непрерывно уменьшается вследствие действия силы, которая стремится вернуть к ней движущееся тело; скорость тела сводится к нулю, когда оно достигает исходной точки. Тогда оно начинает сызнова, и с теми же самыми периодами, только что описанные нами движения и продолжало бы колебаться неопределенно долго, если бы не было сопротивления со стороны окружающей жидкости, инерция которой постепенно уменьшает амплитуду колебаний и в конце концов, через более или менее продолжительное время, заглушает их совсем.
Читать дальшеИнтервал:
Закладка: