Леонард Млодинов - Прямоходящие мыслители. Путь человека от обитания на деревьях до постижения миро устройства
- Название:Прямоходящие мыслители. Путь человека от обитания на деревьях до постижения миро устройства
- Автор:
- Жанр:
- Издательство:Livebook
- Год:2016
- Город:Москва
- ISBN:978-5-9907254-0-9
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Леонард Млодинов - Прямоходящие мыслители. Путь человека от обитания на деревьях до постижения миро устройства краткое содержание
Два фактора – прямохождение и зарождение мышления – когда-то стали мощным толчком для эволюции нашего вида. Посудите сами: всего пару миллионов лет назад мы жевали коренья и только учились ходить прямо, а теперь управляем самолетами, шлем мгновенные сообщения и исследуем воду на Марсе.
Леонард Млодинов – с его великолепным чувством юмора и даром объяснять сложные вещи простым языком – приглашает читателей всех возрастов в увлекательное путешествие по истории нашей цивилизации.
Прямоходящие мыслители. Путь человека от обитания на деревьях до постижения миро устройства - читать онлайн бесплатно ознакомительный отрывок
Интервал:
Закладка:
Хотя никто в те времена не осознавал этого, недостатки Ньютоновой физики проступали особенно ярко именно в явлении, которое взялся изучать Планк, а именно – в излучении абсолютно черного тела. Физики, применяя Ньютоновы законы к расчету количества разночастотного излучения черного материала, получали бессмысленный результат: черное тело может испускать высокочастотное излучение бесконечной мощности.
Будь эти расчеты верны, из модели излучения абсолютно черного тела следовало бы, что, сидя у растопленного камина или открывая дверцу разогретой духовки, вы бы не только нежились в тепле низкочастотного инфракрасного излучения или же приятном чуть более высокочастотном красноватом видимом свете, но и подвергались бомбардировке опасными высокочастотными ультрафиолетовыми, рентгеновскими и гамма-лучами. А в те поры только-только изобретенная электрическая лампочка была бы не полезным инструментом искусственного освещения, а, из-за излучения, возникающего от высоких температур накаливания, оружием массового уничтожения.
Когда Планк начал работать в этой области физики, все знали, что расчеты излучения абсолютно черного тела неверны, но никто не понимал, почему. Пока большинство интересовавшихся этой задачей физиков чесали в затылке, немногие сосредоточились на сочинении частных математических формул для описания экспериментальных данных. Из этих формул удавалось вывести интенсивность излучения абсолютно черного тела для отдельных частот и при определенной температуре, но все равно выходило описательно, и получить можно было лишь заданные необходимые результаты, не выведенные из теоретического понимания. Да и не для всех частот результаты получались верными.
В 1897 году Планк принялся работать над заковыристой задачей – точным описанием излучения абсолютно черного тела. Как и другие, он не ожидал, что эта задача подразумевает неправоту Ньютоновой физики, – он, скорее, предполагал, что физическое описание материала абсолютно черного тела должно содержать глубинную ошибку. Прошло несколько лет, но Планк ничего не добился.
Наконец он решил работать в обратном направлении и, подобно физикам-прикладникам, попросту нащупать подходящее уравнение. Он сосредоточился на двух частных формулах – одна была точным описанием низкочастотного, а вторая – высокочастотного излучения абсолютно черного тела. После многих проб и ошибок он смог «сшить» их воедино в некую собственную формулу для частного случая – изящное математическое выражение, которое он состряпал попросту чтобы объединить отвечающие действительности свойства двух исходных.
Может показаться, что, если многие годы возиться с задачей, в конце концов заслужишь право сделать важное открытие – микроволновку там или на худой конец новый метод изготовления воздушной кукурузы. Планк же остался лишь с математическим выражением, которое, по неведомым причинам, вроде бы работало прилично, хотя Планку не хватало данных, чтобы хорошенько проверить предсказательные способности полученного уравнения.
Планк обнародовал свое уравнение 19 октября 1900 года на заседании Берлинского физического общества. Не успело заседание окончиться, как физик-экспериментатор по имени Генрих [Хайнрих] Рубенс бросился домой и принялся запихивать в уравнение Планка всякие данные – проверить действенность полученной формулы на обильном экспериментальном материале. То, что он обнаружил, потрясло его: уравнение Планка оказалось куда точнее любых его мыслимых посягательств на истину.
Рубенс так воодушевился, что провозился почти всю ночь, дотошно проверяя математику Планкова уравнения применительно к разным частотам и сравнивая теоретические результаты со своими экспериментальными записями. На следующее утро он помчался в гости к Планку – сообщить поразительную весть: результаты согласовывались до ужаса точно – для всех частот. Уравнение Планка выполнялось слишком точно и потому не могло быть частным случаем. Это наверняка что-то значит. Незадача вот в чем: ни Планк, ни кто другой не понимали, что.
Уравнение казалось волшебством – судя по всему, в нем, «выведенном» методом тыка, сокрыты глубокие и таинственные принципы.
Планк взялся трудиться над теорией излучения абсолютно черного тела с целью объяснить его, не прибегая к понятию атома. В некотором смысле ему это удалось. Однако уравнение у него получилось практически с кондачка, и он все же хотел ответить на вопрос, почему оно оказалось действенным. Успех его явно воодушевил, а вот неведение – обескуражило.
Планк со всегдашним своим терпением обратился – быть может, попросту от отчаяния, – к великому поборнику атома австрийскому физику Людвигу Больцману (1844–1906). Тот не одно десятилетие добивался строго противоположного от целей Планка – что атомы следует воспринимать всерьез – и достиг значительных успехов, развив методы, ныне именуемые статистической физикой (хотя убедить людей в важности своей работы ему удалось плохо).
Готовность Планка, пусть и неохотная, обратиться к исследованиям Больцмана – акт, достойный отдельного почтения: проповедник физики без атома ищет интеллектуального прибежища в работах поборника теории, которой он всегда противился. Такая открытость к взглядам, противоречащим собственным убеждениям, есть метод, каким наука и должна делаться, и именно поэтому Эйнштейн позднее относился к Планку с большим почтением, – но обычно наука так не делается. Разумеется, так не делается и много чего в человеческих начинаниях в целом. К примеру, во времена развития интернета, смартфонов и других новых способов общения, подобно физикам, не желавшим принимать теории атома или кванта, почтенные компании вроде «Блокбастер Видео», звукозаписывающие студии, ключевые книготорговые сети, заслуженные магазины медиапродуктов сопротивлялись и не желали принимать новый образ жизни и ведения дел. И потому их обскакали люди и компании помоложе, с большей умственной гибкостью – «Нетфликс», «Ю-Тьюб» и «Амазон». Сам Планк сказал о науке то, что, по сути, применимо к любому революционно новому взгляду: «Новая научная истина не торжествует убеждением оппонентов и вынуждением их узреть свет, а, скорее, побеждает она оттого, что оппоненты постепенно вымирают, а новое поколение растет, уже зная о новой истине» [332] Планку часто ошибочно приписывают другую, более звонкую версию того же высказывания: «Наука движется вперед, одни похороны за другими» [или «Научная истина торжествует по мере того, как вымирают ее противники» – Примеч. прев.]. Исходная цитата такова: Eine neue wissenschaftliche Wahrheit pflegt sich nicht in der Weise durchzusetzen, daß ihre Gegner überzeugt werden und sich als belehrt erkUiren, sondern vielmehr dadurch, daß ihre Gegner aümihlich aussterben und daß die heranwachsende Generation von vornherein mit der Wahrheit vertraut gemacht ist. Опубликовано в: Wissenschaftliche Selbstbiographie: Mit einem Bildnis und der von Max von Laue gehaltenen Traueransprache (Leipzig: Johann Ambrosius Barth Verlag, 1948), стр. 22. Цит. по: Max Planck, Scientific Autobiography and Other Papers, пер. с нем. на англ. Е Gaynor (New York: Philosophical Library, 1949), стр. 33–34.
.
Интервал:
Закладка: