Стивен Вайнберг - Объясняя мир. Истоки современной науки

Тут можно читать онлайн Стивен Вайнберг - Объясняя мир. Истоки современной науки - бесплатно ознакомительный отрывок. Жанр: Прочая научная литература, издательство Альпина нон-фикшн, год 2015. Здесь Вы можете читать ознакомительный отрывок из книги онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.

Стивен Вайнберг - Объясняя мир. Истоки современной науки краткое содержание

Объясняя мир. Истоки современной науки - описание и краткое содержание, автор Стивен Вайнберг, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru

Книга одного из самых известных ученых современности, нобелевского лауреата по физике, доктора философии Стивена Вайнберга – захватывающая и энциклопедически полная история науки. Это фундаментальный труд о том, как рождались и развивались современные научные знания, двигаясь от простого коллекционирования фактов к точным методам познания окружающего мира. Один из самых известных мыслителей сегодняшнего дня проведет нас по интереснейшему пути – от древних греков до нашей эры, через развитие науки в арабском и европейском мире в Средние века, к научной революции XVI–XVII веков и далее к Ньютону, Эйнштейну, стандартной модели, гравитации и теории струн. Эта книга для всех, кому интересна история, современное состояние науки и те пути, по которым она будет развиваться в будущем.

Объясняя мир. Истоки современной науки - читать онлайн бесплатно ознакомительный отрывок

Объясняя мир. Истоки современной науки - читать книгу онлайн бесплатно (ознакомительный отрывок), автор Стивен Вайнберг
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

И Гюйгенсу, и Ньютону были доступны экспериментальные свидетельства того, что свет имеет волновую природу: открытие дифракции иезуитом из Болоньи Франческо Мария Гримальди, учеником Риччоли, опубликованное после его смерти в 1665 г. Гримальди обнаружил, что тень от тонкого прутика в солнечном свете выглядит не идеально четкой, но окаймленной тонкими полосками. Это явление связано с тем фактом, что длина волны света не является ничтожно малой по сравнению с толщиной прутика, но Ньютон считал, что это проявление некоторого рода рефракции, возникающей на поверхности прутика. Вопрос о корпускулярной или волновой природе света перешел в разряд решенных для большинства физиков к началу XIX в., когда Томас Юнг открыл интерференцию – узор, получающийся из-за усиления или угасания световых волн, которые проходят в одну точку разными путями. Как уже было упомянуто, в XX в. стало понятно, что обе эти теории не являются взаимоисключающими. В 1905 г. Эйнштейн понял, что, хотя свет в большинстве случаев ведет себя как волна, энергия в нем передается в маленьких пакетах, которые позже получили названия фотонов. Каждый из них обладает крошечной энергией и импульсом, пропорциональными частоте света.

Ньютон в конце концов представил свою работу по свету в книге «Оптика», написанной на английском в начале 1690-х гг. Она была опубликована в 1704 г., после того, как Ньютон уже стал знаменит.

Ньютон был не только великим физиком, но и выдающимся математиком. Начиная с 1664 г. он изучал работы по математике, в том числе «Начала» Евклида и «Геометрию» Декарта. Вскоре Ньютон смог разрабатывать собственные решения различных задач, многие из которых были связаны с бесконечностью. Например, он рассматривал бесконечные ряды типа x – x ²/2 + x³/3 – x 4/4+… и показал, что сумма такого ряда сходится в логарифм {251} 1 + х.

В 1665 г. Ньютон начал размышлять о бесконечно малых величинах. Он задумался над задачей: предположим, что нам известно расстояние D ( t ), пройденное за время t . Каким образом можно найти скорость в любой момент времени? Ньютон рассуждал, что при неравномерном движении скорость в любой момент времени составляет отношение пройденного расстояния к затраченному времени в любой бесконечно малый интервал времени. Введя символ о для обозначения бесконечно малого интервала времени, он определил скорость за время t как отношение к o расстояния, пройденного в интервал времени между t и t + o , то есть скорость равна [ D ( t + o ) – D ( t )]/ o. Например, если D ( t ) = t ³, тогда D ( t + o ) = t ³ + 3 t ² o + 3 to ² + o ³. Поскольку о стремится к нулю, мы можем не учитывать слагаемые, пропорциональные и , и принять равенство D ( t + o ) = t ³ + 3 t ² o. Таким образом, D ( t + o ) – D ( t ) = 3 t ² o и скорость равна просто 3 t ². Ньютон назвал это флюксией D ( t ), но позже это стало называться производной, одним из основных инструментов современного дифференциального исчисления {252}.

Далее Ньютон заинтересовался проблемой нахождения площадей фигур, ограниченных кривыми. Его ответ представляет собой фундаментальную теорему математического анализа. Пусть надо найти такую функцию, флюксией которой является функция, представленная в виде кривой. Например, как мы уже видели ранее, y = 3 x ² – это флюксия функции y = x ³, поэтому площадь под параболой y = 3 x ² между х = 0 и любым другим х равна x ³. Ньютон назвал это «обратным методом флюксий», в современной математике это называется интегрированием.

Ньютон изобрел дифференциальное и интегральное исчисления, но долгое время эти работы не были широко известны. Только в 1671 г. он решил их опубликовать вместе со своей работой по оптике, но, очевидно, в Лондоне не нашлось книгоиздателя, который согласился бы на эту публикацию без солидной платы {253}.

В 1669 г. Барроу передал рукопись Ньютона «Анализ с помощью уравнений с бесконечным числом членов» (De analysi per aequationes numero terminorum infinitas) математику Джону Коллинзу. Ее копию увидел во время своего посещения Лондона в 1676 г. философ и математик Готфрид Вильгельм Лейбниц, бывший ученик Гюйгенса, который был на несколько лет младше Ньютона и независимо от него открыл основную суть математического анализа годом ранее. В 1676 г. Ньютон описал некоторые из своих результатов в письмах, рассчитывая, что Лейбниц увидит эти письма. В 1684 и 1685 гг. Лейбниц опубликовал свою работу по математическому анализу в статьях, не ссылаясь на Ньютона. В этих публикациях Лейбниц ввел термин «математический анализ» и его современные обозначения, в том числе знак интеграла.

Чтобы обозначить свои права на математический анализ, Ньютон описал свои собственные методы на двух листах, включенных в издание «Оптики» 1704 г. В январе 1705 г. в анонимном отзыве на «Оптику» было отмечено, что эти методы были заимствованы у Лейбница. Ньютон предполагал, что этот отзыв написал сам Лейбниц. Затем в 1709 г. в «Философских записках Королевского общества» вышла статья Джона Кейла, защищавшего приоритет Ньютона на это открытие. В 1711 г. Лейбниц ответил злобной отповедью в адрес Королевского общества. В 1712 г. Королевское общество собрало анонимный комитет для разрешения противоречия по этому вопросу. Два века спустя список членов этого комитета был рассекречен, и выяснилось, что он состоял практически целиком из сторонников Ньютона. В 1715 г. комитет пришел к решению, что математический анализ является заслугой Ньютона. План доклада по этому вопросу набросал для комитета сам Ньютон. Его заключения подкреплялись анонимным отзывом на доклад, автором которого также был он сам.

Современные ученые считают {254}, что Ньютон и Лейбниц открыли математический анализ независимо. Ньютон сделал это на десятилетие раньше Лейбница, но Лейбниц получил всю славу, опубликовав свою работу. Ньютон, напротив, единственный раз, в 1671 г. попытавшись найти издателя для своих заметок по математическому анализу, похоронил свою работу до тех пор, пока не был вынужден извлечь ее наружу, начав противостояние с Лейбницем. Чаще всего решение выйти на публику становится критическим моментом в процессе научного открытия {255}. Оно свидетельствует о том, что автор считает, что его работа верна и может быть использована другими учеными. Именно по этой причине сегодня заслуги за научное открытие достаются тому, кто первый его опубликует. Но, несмотря на то что Лейбниц был первым, кто опубликовал работы по математическому анализу, как мы увидим далее, именно Ньютон, а не Лейбниц, сумел приложить математический анализ к научным задачам. Хотя, как и Декарт, Лейбниц был великим математиком, чьи философские труды вызывают огромное восхищение, он не внес особого вклада в развитие естественных наук.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Стивен Вайнберг читать все книги автора по порядку

Стивен Вайнберг - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




Объясняя мир. Истоки современной науки отзывы


Отзывы читателей о книге Объясняя мир. Истоки современной науки, автор: Стивен Вайнберг. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x