Михаил Васильев - Металлы и человек
- Название:Металлы и человек
- Автор:
- Жанр:
- Издательство:Советская Россия
- Год:1962
- Город:Москва
- ISBN:нет данных
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Михаил Васильев - Металлы и человек краткое содержание
Эта книга рассказывает о металлах. И о таких широкоизвестных, как железо, медь, алюминий, и о тех, даже названия которых приходилось слышать не всем: церий, гадолиний, тантал.
Вы сможете прочесть здесь и о волшебных свойствах юного соперника железа — титана, и об уране — новом топливе для электростанций, и о вольфраме — самом прочном и самом тугоплавком в семействе металлов. В общем — обо всех восьмидесяти металлах, которые существуют в природе.
Вместе с тем это книга и о человеке, о его великой власти над металлами. Ведь это человек превращает ржавые камни, руду в металлические изделия.
Это он собрал, в иных случаях буквально по атому, первые крупинки редких и рассеянных элементов и открыл их удивительные свойства. Он облагородил металлы: сделал сталь нержавеющей, слабый алюминий — прочным, желтое золото — разнообразным по цвету. Это человек нашел металлам бесчисленное применение — для сооружений высотных зданий и газопроводов, космических ракет и вагонов метро, для сшивания кровеносных сосудов и превращения солнечных лучей в электрический ток…
Книга эта рассказывает и о борьбе советского народа за металл, о наиболее прогрессивных методах получения и обработки металлов, о важности их экономии и рационального использования.
Книга написана очень популярно. Она рассчитана на то, чтобы ее с пользой для себя прочитал каждый интересующийся современной наукой и техникой и перспективами их развития.
Металлы и человек - читать онлайн бесплатно полную версию (весь текст целиком)
Интервал:
Закладка:
Есть и другой способ получения бериллия — термический. Но он не проще и не легче описанного, хотя и чаще применяется.
Тонкое, почти ювелирное производство. Сколько труда приходится затрачивать, чтобы получить крылатые металлы — алюминий, магний, бериллий! А нет ли других, более прямых путей получения этих металлов, вроде тех, которыми получают железо? Чтобы сразу в огне домны ушли в шлак все вредные примеси и остался один металл.
Такие пути давно ищут металлурги во всех странах мира, где существует производство крылатых металлов, и кое-какие успехи уже достигнуты.
Уже получили путевку в жизнь термические способы изготовления магния из его окиси. Восстановление металла осуществляется в электропечах углеродом нефтяного кокса. Металлический магний в виде газа удаляется из печи, работающей при температуре в 1950–2050 градусов, охлаждается и собирается в виде пыли, улавливаемой мешочными фильтрами. Осуществляется и получение магния вытеснением его из окиси металлическим алюминием.
Сложнее обстоит дело с алюминием и бериллием. Дело в том, что оба эти металла энергично и прочно соединяются с углеродом, образуя карбиды. Поэтому для получения этих металлов восстановлением углеродом нужно участие второго металла, который растворял бы образующийся металл, предохраняя его от соприкосновения с углеродом.
Таким способом получают меднобериллиевые и никелебериллиевые сплавы. Очевидно, что в этих случаях растворяющими бериллий металлами были медь и никель.
Таким же способом в электропечах получают сплав алюминия с кремнием — так называемый силикоалюминий. Путем дальнейшей переработки из силикоалюминия можно получать и чистый алюминий.
Превратят ли будущие металлурги эти почти не хоженые сегодня пути получения крылатых металлов в столбовую дорогу? Вряд ли. По всей вероятности, будут совершенствоваться уже проложенные пути, связанные с электролизом расплавленных соединений. Но, может быть…
Да, история науки знает немало случаев, когда внезапно резко изменялся весь путь развития целой отрасли производства. Может быть, еще не открыт самый простой и экономичный способ получения этих металлов. Получил же алюминий из глины, понятия не имея об электрическом токе, древнеримский металлург? И даже если это просто сказка, пусть она воодушевляет на новые поиски…
Самый легкий
Литий является самым легким из металлов. Его удельный вес равен 0,534. Он вдвое легче воды, в 15 раз легче железа. Вот бы из него строить самолеты и космические ракеты!
Однако все остальные свойства лития как будто специально подобраны такими, чтобы это как можно дольше оставалось манящей мечтой для инженеров-конструкторов. Ибо…
По своим механическим свойствам легкий литий напоминает тяжелый свинец. Он такой же мягкий и непрочный. Попробуйте представить себе в сверхзвуковом полете крыло самолета, сделанное из такого податливого и непрочного металла.
Литий плавится при температуре в 186 градусов. При температуре в 1336 градусов он кипит. Однако на открытом воздухе уже при температуре около 600 градусов он загорается.
Да, незавидная перспектива — оказаться в кабине ионосферной космической ракеты, сделанной из лития! Случайно брошенная спичка уже может проплавить в нем дыру. Опасно будет уронить горящий пепел папиросы, не говоря уже о неизбежном сильном аэродинамическом нагреве от трения об атмосферу.
Литий соединяется при комнатной температуре и с азотом и с кислородом воздуха. Если оставить кусок лития в стеклянной банке с притертой пробкой, вы рискуете потом не открыть этой пробки совсем: литий поглотит весь воздух в банке, там образуется вакуум, и атмосферное давление накрепко вдавит пробку.
Не сможет долго ожидать пассажиров летательный аппарат, изготовленный из лития. Пока идет посадка, он весь превратится в соединения лития с азотом и кислородом, рассыпется коричневатым порошком.

«…и он приказал ему, и грозный дух сжался, сморщился и послушно залез в узкое горлышко сосуда».
Трудно окажется пилотам и космической ракеты, сделанной из лития. В атмосферах многих планет имеется большое количество водорода. Он — основной компонент и межпланетного газа. А литий еще более активно, чем с кислородом и азотом, соединяется с водородом. Огромные его количества по объему можно связать ничтожным количеством лития. Один килограмм гидрата лития (так называется его соединение с водородом) уместится в коробке для макарон. А ведь в нем содержится полторы тысячи литров водорода! Перевозить водород в виде соединения с литием в целом ряде случаев оказывается удобнее, чем в тяжелых стальных баллонах. Это одно из важнейших сегодня применений лития. Да и все другие применения лития сегодня — это применения его соединений и сплавов.
Гидрат лития является отличным раскислителем расплавленных металлов.
Едкий литий — соединение с кислородом и водородом — добавляют в электролит аккумуляторов. Это удлиняет срок их работы.
Смазки, в которые вводят некоторые соединения лития, меньше загустевают на морозе и разжижаются при повышении температуры. Они применяются в авиации.
Соли лития входят в состав специальных стекол, пропускающих ультрафиолетовые лучи. В стекле кинескопа вашего телевизора также содержится литий. Но главные применения лития все-таки впереди.
Что из того, что у чистого лития недостаточная прочность, высокая химическая активность, низкая температура плавления? И алюминий не рождается в электролитической ванне прочным, как сталь, и благородным, как платина. И прочность и устойчивость против химических воздействий придает ему человек, приспосабливая для своих целей. Сумеет он приспособить и литий.
Техника уже знает целый ряд сплавов лития, обладающих некоторыми совсем не плохими свойствами. Так, сплав с алюминием, содержащий 20 процентов лития, плавится только при температуре в 720 градусов. Совсем не плохо! Сплав с цинком, содержащий 18 процентов лития, плавится при 520 градусах. И так далее и так далее.
Вполне возможно, что будут найдены способы упрочить литий, сделать его более коррозионно устойчивым, сохранив драгоценную легкость, — в общем, превратить литий в крылатый металл, который с восторгом за его отличные качества примут конструкторы, который унесет человека и за пределы родной планеты.
Топливо межпланетных кораблей
Взгляните на чертеж космической ракеты: вся она по существу состоит из одних баков с топливом — горючим и окислителем. Все остальное— пассажирские ли помещения космических лайнеров близкого будущего, помещения ли для автоматической аппаратуры сегодняшних лунных разведчиков, ракетные ли двигатели — занимает небольшое сравнительно место.
Читать дальшеИнтервал:
Закладка: