Михаил Васильев - Металлы и человек
- Название:Металлы и человек
- Автор:
- Жанр:
- Издательство:Советская Россия
- Год:1962
- Город:Москва
- ISBN:нет данных
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Михаил Васильев - Металлы и человек краткое содержание
Эта книга рассказывает о металлах. И о таких широкоизвестных, как железо, медь, алюминий, и о тех, даже названия которых приходилось слышать не всем: церий, гадолиний, тантал.
Вы сможете прочесть здесь и о волшебных свойствах юного соперника железа — титана, и об уране — новом топливе для электростанций, и о вольфраме — самом прочном и самом тугоплавком в семействе металлов. В общем — обо всех восьмидесяти металлах, которые существуют в природе.
Вместе с тем это книга и о человеке, о его великой власти над металлами. Ведь это человек превращает ржавые камни, руду в металлические изделия.
Это он собрал, в иных случаях буквально по атому, первые крупинки редких и рассеянных элементов и открыл их удивительные свойства. Он облагородил металлы: сделал сталь нержавеющей, слабый алюминий — прочным, желтое золото — разнообразным по цвету. Это человек нашел металлам бесчисленное применение — для сооружений высотных зданий и газопроводов, космических ракет и вагонов метро, для сшивания кровеносных сосудов и превращения солнечных лучей в электрический ток…
Книга эта рассказывает и о борьбе советского народа за металл, о наиболее прогрессивных методах получения и обработки металлов, о важности их экономии и рационального использования.
Книга написана очень популярно. Она рассчитана на то, чтобы ее с пользой для себя прочитал каждый интересующийся современной наукой и техникой и перспективами их развития.
Металлы и человек - читать онлайн бесплатно полную версию (весь текст целиком)
Интервал:
Закладка:
Влияние витаминов на живой организм подобно влиянию легирующих металлов на сталь.
Несколько процентов или даже десятых долей процента металла, который зачастую и сам-то не обладает какими-либо выдающимися свойствами, — и резко изменяется качество стали. Если это ванадий, сталь становится неутомимой, способной бессчетное количество раз ответить упругим противодействием на сгибающее ее постороннее усилие. Если это вольфрам, внезапно вырастает твердость стали. Марганец делает сталь неразрушимой, износостойкой. Никель сообщает ей чудесную способность сопротивляться коррозии, не ржаветь и т. д.
Примерно сто лет назад впервые начали вводить в сталь легирующие добавки, имея целью улучшить ее качество. С тех пор каких только примесей не испытали металлурги! Были среди них и такие, что понижали качество металла. Но постепенно определился и круг металлов, которые вводятся в сталь в тех или иных случаях, и пропорции этих добавок. Возникло огромное количество марок легированных сталей, обладающих широчайшим диапазоном разнообразнейших свойств.
Многие металлы свою службу человеку начали именно в качестве присадок к стали. Только потом, и в значительной степени благодаря этому применению, ближе знакомились с ними люди и находили им новые— по силам и способностям — применения. Такой, например, была судьба вольфрама — самого прочного и самого тугоплавкого металла.
Другие, честно работая на главный металл сегодняшнего дня, вместе с тем предъявляют свое право на самостоятельную роль в технике и промышленности. Таков путь по жизни соперника железа — титана.
Наиболее часто применяющиеся в легированных сталях металлы в периодической системе элементов тесной группой расположились вокруг железа. В их круг входят медь, никель, кобальт — металлы, занимающие следующие за железом клетки в системе элементов. К ним относятся и марганец, хром, ванадий, титан — жильцы предшествующих железу клеток. Нельзя обойти в этом списке молибден и вольфрам, но и эти элементы тесно примыкают к основной группе. Они, правда, обитают на других «этажах» периодической системы элементов.
Рассказу о витаминах стали и посвящена эта глава книги
Горный гном
Этот металл занимает в периодической таблице элементов клетку между железом и никелем. Современное его название — кобальт. Соединения его применялись человеком еще за тысячи лет до того, как впервые этот металл удалось получить в чистом виде.
Еще в Древнем Египте и Китае соединения кобальта применялись для окраски стекол и глазурей в необыкновенно красивый и устойчивый синий цвет. Но получить чистый кобальт из руд его — а они были известны давно — обычными методами древней и средневековой металлургии не удавалось. И эти руды, внешне похожие на руды других металлов, но не дающие металла, германские мастера назвали — кобольд. Это было имя злого горного гнома. Когда в 1735 году шведскому химику Брандту удалось выделить новый чистый металл, он и назвал его по имени злого горного гнома.
В XVIII и XIX веках кобальт почти не находил себе применения, только древнее применение для окраски стекла и керамики введением окислов кобальта не было забыто. Зато XX век нашел множество применений непокорному горному гному.
Впрочем, внешность кобальта отнюдь не соответствует злому названию, которым его наградили незадачливые средневековые металлурги. В чистом виде кобальт — это приятного белого цвета, с легким красноватым оттенком металл, ковкий и тягучий. Плавится он почти при той же температуре, что и чистое железо, — при 1490 градусах, кипит при 3185 градусах.
При обычной температуре на воздухе кобальт почти не окисляется. Только при нагреве до 300 градусов начинает он покрываться легкой пленкой окисла. Но порошкообразный кобальт (его можно получить восстановлением окислов кобальта водородом) при 250 градусах уже самовоспламеняется на воздухе.
Интересным свойством кобальта является его способность растворять в себе водород. Кусок твердого кобальта может растворить в себе до 35 объемов водорода, а порошкообразный кобальт — даже до 100 объемов.
Соединения кобальта встречаются во многих медных, никелевых и марганцевых рудах. Кобальт получают из шлаков, штейнов или огарков после переработки этих руд в качестве побочного продукта. Обычно кобальт выщелачивают из этих отходов подкисленной водой. Дальнейшее отделение кобальта от сопутствующих металлов — сложный и хлопотливый процесс.
Производство кобальта растет, хотя и не так быстро, как некоторых других металлов. Если в 1900 году во всем мире было получено всего 354 тонны этого металла, то в 1947 году мировое производство кобальта составило (без СССР) 6200 тонн.
Сплавы кобальта обладают разнообразными удивительными свойствами. Это и определяет их применение.
Сплав 35 процентов кобальта с 50 процентами железа и рядом других добавок обладает максимальной из всех известных материалов намагничиваемостью.
Сплав кобальта с платиной после соответствующей термообработки имеет огромную коэрцитивную силу — его очень трудно размагнитить.
Известны и другие сплавы кобальта, обладающие особенными магнитными свойствами и идущие для изготовления постоянных магнитов и деталей электрооборудования. Широко известные магнико и альнико — это тоже представители семейства кобальтовых сплавов.
Другая важная группа этого семейства — жаропрочные и жароупорные сплавы. Представителем их может служить распространенный сплав виталлий. В его состав входят 65 процентов кобальта, 28 процентов хрома, 6 процентов молибдена, кроме того, доли процента углерода, железа и никеля. Этот сплав может длительно работать при температуре до 800 градусов, а при несколько более низких напряжениях — и при 900 градусах.
Из этого сплава изготавливают лопатки турбокомпрессоров и газовых турбин, детали реактивных двигателей и паровых котлов высоких параметров. Инженеры с удовольствием применяют этот сплав, и, если бы не высокая цена кобальта, он нашел бы еще более широкое распространение.
Жаропрочные сплавы кобальта применяются и в качестве связующих добавок при изготовлении твердых сплавов методом порошковой металлургии.
В качестве легирующей добавки кобальт входит в состав ряда сталей. Однако для того, чтобы проявилось облагораживающее влияние кобальта, его содержание в металле должно быть достаточно большим, обычно в пределах 5—10 процентов, но нередко и до 20 процентов. Это очень ограничивает применение кобальтовых сталей. И все же применяются быстрорежущие стали, содержащие до 10 процентов кобальта. Известны и магнитные стали, и жаропрочные стали, содержащие кобальт. Но еще шире используются соединения кобальта.
Читать дальшеИнтервал:
Закладка: