Коллектив авторов - Теории всего на свете

Тут можно читать онлайн Коллектив авторов - Теории всего на свете - бесплатно полную версию книги (целиком) без сокращений. Жанр: Прочая научная литература, издательство Лаборатория знаний: Лаборатория Базовых Знаний, год 2016. Здесь Вы можете читать полную версию (весь текст) онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.

Коллектив авторов - Теории всего на свете краткое содержание

Теории всего на свете - описание и краткое содержание, автор Коллектив авторов, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru

«Напишите о вашем самом любимом, самом интересном, глубоком и изящном объяснении», – попросил издатель и писатель Джон Брокман известнейших ученых всего мира, работающих в разных областях науки, а потом собрал полученные эссе в книге, которую вы сейчас держите в руках. На ее страницах – рассказы о теориях, помогающих понять главные идеи физики и астрономии, экономики и психологии, биологии и многих других наук. Чтение это увлекательное, ведь среди авторов сборника – Джаред Даймонд, Нассим Талеб, Стивен Пинкер, Мэтт Ридли, Ричард Докинз и другие выдающиеся умы современности.

Теории всего на свете - читать онлайн бесплатно полную версию (весь текст целиком)

Теории всего на свете - читать книгу онлайн бесплатно, автор Коллектив авторов
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Все вышеприведенные факты, как и многие другие, можно объяснить одним законом: наш мозг принимает решения, накапливая доступную статистическую информацию и выдавая результат, когда общий объем информации превышает некоторый порог.

Поясню это утверждение. Принимая решение, мозг сталкивается с проблемой отделения сигнала от шума. Поступающая информация (которая служит основой для принятия решения) всегда содержит шум: фотоны попадают на нашу сетчатку в случайные моменты, нейроны передают информацию лишь с ограниченной надежностью, к тому же по всему мозгу то и дело происходят спонтанные всплески нейронной активности, добавляя шум. Даже когда на входе всего лишь число, анализ нейронной активности показывает, что количество, соответствующее этому числу, кодируется «шумной» группой нейронов, активизирующихся в полуслучайные моменты, причем некоторые нейроны сигнализируют «Я думаю, это 4», другие – «Это ближе к 5», третьи – «Это ближе к 3» и т. п. Поскольку мозговая система принятия решений видит лишь никак не помеченные пики нейронной активности, а не развернутые символы, отделение зерен от плевел становится для нее настоящей проблемой.

Как же вынести надежное решение в присутствии шума? Впервые математический ответ для этой задачи предложил Алан Тьюринг, разгадывая во время Второй мировой войны код «Энигмы» в Блетчли-парке – секретном центре британской разведки. Тьюринг обнаружил небольшую погрешность в действиях немецкой шифровальной машины «Энигма»; это означало, что некоторые немецкие послания содержали небольшое количество понятной британским дешифровщикам информации. Но, к сожалению, ее не хватало, чтобы разгадать шифр. И тогда Тьюринг для объединения всех разрозненных «улик» применил закон Байеса. Не останавливаясь на математическом аппарате, скажем лишь, что закон Байеса дает простой способ учесть и сложить вместе все такие «намеки на истину», приплюсовать их к уже имеющимся сведениям и в результате получить обобщенную статистическую картину, которая покажет искомую «общую сумму».

Из‑за шума на входе поступающая «сумма улик» колеблется вверх-вниз: некоторые входящие послания подтверждают наши выводы, а некоторые лишь добавляют шума. На выходе мы получаем то, что математики именуют случайным блужданием: колеблющуюся череду чисел, которая является функцией времени. Однако в нашем случае числа имеют определенный смысл: они представляют вероятность того, что одна гипотеза верна (т. е. что число на входе меньше 5). А следовательно, разумно будет действовать подобно специалистам‑статистикам и подождать, пока накапливаемый нами массив статистических данных не превзойдет определенный порог – определенное значение вероятности ( р ). Если мы установим р = 0,999, это будет означать, что шанс ошибиться у нас – один из тысячи.

Заметьте, мы можем установить этот порог на любом произвольно выбранном значении. Однако чем выше мы его задерем, тем дольше нам придется ждать решения. Тут уж либо скорость ценой точности, либо наоборот: можно долго ждать и в итоге принять очень точное решение, либо рискнуть отреагировать раньше, но при этом допустить больше ошибок. Собственно, при любом выборе мы всегда совершим сколько-то ошибок.

Достаточно сказать, что алгоритм принятия решений, который я набросал выше (и который, попросту говоря, описывает, как любое разумное существо должно вести себя в условиях информационного шума), ныне рассматривается учеными как общий механизм принятия решений людьми. Он объясняет и время отклика, и разброс этого времени, и форму соответствующего статистического распределения. Он дает описание того, почему мы допускаем ошибки, как эти ошибки соотносятся со временем отклика и как мы устанавливаем баланс скорости и точности. Он применим ко всем разновидностям решений, от сенсорных (я заметил какое-то движение – или нет?) до лингвистических (что я услышал – «дом» или «лом»?) и даже до проблем сравнительно высокого уровня (когда мне лучше выполнить это задание – в первую или во вторую очередь?). А в более сложных случаях (скажем, при выполнении операций над многозначными числами или осуществлении целой серии заданий) наше поведение являет собой череду шагов, каждый из которых включает накопление информации и достижение определенного порога. Так что подобный подход, оказывается, великолепно описывает и наши напряженные многостадийные подсчеты, уподобляющие нас машинам Тьюринга.

Более того, это поведенческое описание принятия решений сегодня позволяет добиться существенного прогресса в нейробиологии. Можно записать сигналы нейронов обезьяньего мозга, указывающие на похожее накопление соответствующих сенсорных сигналов: об этом свидетельствует скорость передачи нервных импульсов и их интенсивность. Теоретическое различие между накоплением информации и достижением порогового значения помогает разбить мозг на специализированные подсистемы с точки зрения теории принятия решений.

Как и для всякого изящного научного закона, нас здесь подстерегает много сложностей. Вероятно, «накопитель информации» у нас не один, их много: мозг аккумулирует данные на каждом из последовательных этапов обработки данных. И в самом деле, чем больше мы исследуем человеческий мозг, тем сильнее он напоминает потрясающей мощи байесовскую машину, которая на каждой стадии обработки данных совершает множество параллельных операций, принимая множество микрорешений. Многие ученые полагают, что наше чувство уверенности, стабильности и даже осознания себя и мира могут корениться в таких мозговых «решениях» высокого порядка и в конце концов тоже станут жертвой какой-нибудь похожей математической модели. Процесс оценки – еще один немаловажный ингредиент в принятии взвешенных решений (я намеренно не стал о нем здесь распространяться). И наконец, система принятия решений полна априорных допущений, отклонений, ограничений по времени и других значимых факторов, которые не позволяют с абсолютной точностью свести ее к математически оптимальному виду.

Однако в первом приближении этот закон все-таки является одним из самых изящных и плодотворных открытий, которые совершила психология в XX веке: люди действуют как статистические механизмы, стремящиеся к оптимуму, и наши решения связаны с накоплением доступной информации, продолжающимся, пока не будет достигнут определенный порог.

Об одном изречении лорда Актона

Михай Чиксентмихайи

Заслуженный профессор психологии и менеджмента Клермонского университета, содиректор-учредитель Научно-исследовательского центра качества жизни Клермонского университета; автор книги Flow: The Phychology of Optimal ExperienceПоток. Психология оптимального переживания ». М., Альпина Нон-фикшн, 2013)

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Коллектив авторов читать все книги автора по порядку

Коллектив авторов - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




Теории всего на свете отзывы


Отзывы читателей о книге Теории всего на свете, автор: Коллектив авторов. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x