Леонард Сасскинд - Космический ландшафт. Теория струн и иллюзия разумного замысла Вселенной
- Название:Космический ландшафт. Теория струн и иллюзия разумного замысла Вселенной
- Автор:
- Жанр:
- Издательство:Издательство «Питер»046ebc0b-b024-102a-94d5-07de47c81719
- Год:2015
- Город:Санкт-Петербург
- ISBN:978-5-496-01166-2
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Леонард Сасскинд - Космический ландшафт. Теория струн и иллюзия разумного замысла Вселенной краткое содержание
Леонард Сасскинд, известный американский физик и один из создателей теории струн, в свое время предложил революционную концепцию понимания Вселенной и места человека в ней. Своими исследованиями Сасскинд вдохновил целую плеяду современных физиков, которые поверили, что эта теория сможет однозначно предсказать свойства нашей Вселенной. Теперь же в своей первой книге для широкого круга читателей Сасскинд уточняет и переосмысляет свои взгляды, утверждая, что данная идея отнюдь не универсальна и ей придется уступить место гораздо более широкому понятию гигантского «космического ландшафта».
Исследования начала XXI века позволили науке подняться на новую ступень в познании мира, утверждает Сасскинд. И эта увлекательная книга, переносящая читателя на передовую сражений в современной физике, – яркое тому подтверждение.
Космический ландшафт. Теория струн и иллюзия разумного замысла Вселенной - читать онлайн бесплатно ознакомительный отрывок
Интервал:
Закладка:
Начнём с определения положения. Для получения чёткого изображение шара длина волны света должна быть не слишком велика. Правило простое: если вы хотите найти положение объекта с заданной точностью, необходимо использовать свет с длиной волны, не превышающей заданную погрешность. Любые изображения, получаемые при помощи света, являются более или менее нерезкими, и желание увеличить резкость заставляет использовать более короткие волны. Подобная проблема отсутствует в классической физике, где энергия светового импульса может быть сколь угодно малой. Но как показал Эйнштейн, свет состоит из неделимых фотонов, и более того, как мы увидим далее, чем меньше длина волны света, тем больше энергия составляющих его фотонов.
Всё это означает, что для получения более резкого изображения, позволяющего более точно определить положение шара, требуется использовать фотоны более высоких энергий. Но это накладывает серьёзные ограничения на точность последующего измерения скорости. Дело в том, что более энергичные фотоны, отражаясь от бильярдного шара, будут передавать ему больший импульс, тем самым изменяя его скорость. Это наглядный пример провала попытки определить положение и скорость с бесконечной точностью.
Обнаруженная в 1905 году связь между длиной волны электромагнитного излучения и энергией фотонов (чем меньше длина волны, тем больше энергия) стала одним из важнейших открытий Эйнштейна. В порядке увеличения длины волны спектр электромагнитного излучения состоит из гамма-лучей, рентгеновских лучей, ультрафиолетового, видимого и инфракрасного света, микроволнового излучения и радиоволн. Радиоволны имеют длины волн от долей метра до космических размеров. Они представляют собой очень плохой выбор для получения резких изображений обычных объектов, потому что величина размытия изображения будет порядка длины волны. На экране радиолокатора человек будет неотличим от мешка с грязным бельём. Более того, мы даже не сможем точно сказать, одного или двух людей мы видим, если расстояние между ними будет меньше длины радиоволны. Все изображения будут выглядеть размытыми пятнами. Это не означает, что радиоволны бесполезны для получения изображений: они просто не годятся для изображения слишком малых предметов. Радиоастрономия является очень мощным методом изучения крупных астрономических объектов, в то время как гамма-излучение лучше всего подходит для получения информации об очень мелких вещах, таких как атомные ядра, потому что длина волны гамма-кванта намного меньше размера атома.
Другими словами, энергия кванта увеличивается с уменьшением длины волны. Отдельные радиокванты имеют слишком маленькую энергию, чтобы их обнаружить. Фотоны видимого света более энергичны: одного фотона видимого света достаточно, чтобы разрушить молекулу. Адаптированный к темноте человеческий глаз способен различать отдельные фотоны, потому что их энергии достаточно для возбуждения палочек сетчатки. Ультрафиолетовые и рентгеновские фотоны обладают энергией, достаточной для выбивания электрона из атома, а гамма-кванты способны разрушать не только атомные ядра, но даже протоны и нейтроны.
Этой обратно пропорциональной зависимостью между длиной волны и энергией объясняется одна из важных тенденций в физике ХХ века: строительство всё более и более мощных ускорителей. Чем глубже пытаются проникнуть физики в структуру материи, исследуя молекулы, атомы, ядра, кварки и т. д., чем более мелкие объекты они исследуют, тем меньшие длины волн им нужны для получения чётких изображений этих объектов. Но уменьшение длины волны неизбежно требует увеличения энергии квантов. Для получения таких высоких энергий частицы приходится ускорять до огромных кинетических энергий. Например, для ускорения электронов до огромных энергий приходится строить гигантские по размерам установки. Стэнфордский линейный ускоритель (SLAC), располагающийся неподалёку от того места, где я живу, может ускорить электроны до энергий, в 200 000 раз превосходящих их массы. Но это требует машины примерно в две мили длиной. SLAC является по существу двухмильным микроскопом, который позволяет наблюдать объекты в тысячу раз меньшие, чем протон.
По мере того как на протяжении XX века физикам становились доступны для изучения всё более мелкие объекты, ими обнаруживались всё более неожиданные вещи. Одним из самых драматических стало открытие, что протоны и нейтроны не являются элементарными частицами. Расстреливая нуклоны высокоэнергетичными частицами, учёные сумели различить составляющие их крошечные компоненты – кварки. Но даже при самых больших энергиях (которым соответствуют самые малые длины волн) электрон, фотон и кварк остаются, насколько мы можем утверждать, точечными объектами. Это означает, что мы не можем обнаружить никакой внутренней структуры или составляющих частей электронов и кварков, равно как не можем и определить их размеры. Они так и остаются для нас бесконечно малыми точками.
Вернёмся к принципу неопределённости Гейзенберга и его последствиям. Представим себе один шар на бильярдном столе. Так как шар не может покинуть бильярдный стол, мы автоматически кое-что уже знаем о его положении в пространстве: неопределённость его положения не больше, чем размеры стола. Чем меньше стол, тем более точно мы знаем положение шара, но тем выше становится неопределённость импульса. Если бы мы начали измерять скорость шара, запертого в пределах бильярдного стола, то в разные моменты времени получили бы разные значения скорости, и в первую очередь это касается направления скорости. Если же мы попытаемся отобрать у шара всю его кинетическую энергию, то обнаружим, что в квантово-механическом случае остаточные колебания не могут быть устранены. Брайан Грин [19]придумал для описания этого движения термин квантовая дрожь , и я буду следовать его примеру. Кинетическая энергия, связанная с квантовой дрожью, называется энергией нулевых колебаний , и её невозможно отобрать у квантового объекта.
Существование квантовой дрожи, требуемое принципом неопределённости, приводит к интересному следствию, когда мы пытаемся охладить обычное вещество до нулевой температуры. Тепло, как известно, представляет собой кинетическую энергию случайных движений молекул. В классической физике при охлаждении системы до абсолютного нуля молекулы в конце концов полностью останавливаются и, как результат, их кинетическая энергия тоже становится равной нулю.
Каждая молекула в твёрдом теле имеет вполне определённое положение, только она удерживается на месте не бортами бильярдного стола, а другими молекулами. Принцип неопределённости требует, чтобы каждая молекула обязательно обладала некоторой скоростью. В результате в реальном веществе, подчиняющемся законам квантовой механики, кинетическая энергия никогда не может быть отобрана у молекул полностью, даже при абсолютном нуле!
Читать дальшеИнтервал:
Закладка: