Леонард Сасскинд - Космический ландшафт. Теория струн и иллюзия разумного замысла Вселенной
- Название:Космический ландшафт. Теория струн и иллюзия разумного замысла Вселенной
- Автор:
- Жанр:
- Издательство:Издательство «Питер»046ebc0b-b024-102a-94d5-07de47c81719
- Год:2015
- Город:Санкт-Петербург
- ISBN:978-5-496-01166-2
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Леонард Сасскинд - Космический ландшафт. Теория струн и иллюзия разумного замысла Вселенной краткое содержание
Леонард Сасскинд, известный американский физик и один из создателей теории струн, в свое время предложил революционную концепцию понимания Вселенной и места человека в ней. Своими исследованиями Сасскинд вдохновил целую плеяду современных физиков, которые поверили, что эта теория сможет однозначно предсказать свойства нашей Вселенной. Теперь же в своей первой книге для широкого круга читателей Сасскинд уточняет и переосмысляет свои взгляды, утверждая, что данная идея отнюдь не универсальна и ей придется уступить место гораздо более широкому понятию гигантского «космического ландшафта».
Исследования начала XXI века позволили науке подняться на новую ступень в познании мира, утверждает Сасскинд. И эта увлекательная книга, переносящая читателя на передовую сражений в современной физике, – яркое тому подтверждение.
Космический ландшафт. Теория струн и иллюзия разумного замысла Вселенной - читать онлайн бесплатно ознакомительный отрывок
Интервал:
Закладка:
Постоянная тонкой структуры является примером величины, которые физики называют константами связи . Каждая константа связи ассоциирована в квантовой теории поля с одним из базисных событий, с определённым типом вершины на фейнмановской диаграмме. Константа связи является мерой силы или интенсивности взаимодействия, представленного вершиной соответствующего типа. В квантовой электродинамике основной тип вершин соответствует излучению фотона электроном. Рассмотрим более подробно, что происходит при излучении фотона.
Можно начать с вопроса: что определяет конкретную точку, в которой электрон, двигаясь в пространстве-времени, испускает фотон? Ответ заключается в том, что ничто не определяет, – физика на микроуровне непредсказуема. Природа содержит элемент случайности, который буквально сводил с ума Эйнштейна в его последние годы. «Бог не играет в кости!» – протестовал Эйнштейн. [25]Но независимо от того, нравилось ли это Эйнштейну, природа не является детерминированной. В природе, как я уже сказал, есть элемент случайности, который встроен в Законы Физики на самом глубоком уровне, и даже Эйнштейн ничего не мог с этим поделать. Но то, что природа не является детерминированной, вовсе не означает, что она полностью хаотична. Вот тут и выступают на сцену принципы квантовой механики. В отличие от ньютоновской физики, квантовая механика никогда не предсказывает будущее на основании информации о прошлом. Вместо этого она предоставляет очень точные правила для вычисления вероятности различных альтернативных результатов эксперимента. Нет никакой возможности предсказать окончательное местоположение фотона, который прошёл через щель, равно как не существует никакой возможности точно предсказать, в каком месте своей траектории электрон испустит фотон или в каком месте другой электрон сможет его поглотить. Но существует определённая вероятность для этих событий.
Хорошей иллюстрацией такой вероятности служит работа электронно-лучевой трубки старого телевизора. Свет, исходящий от телевизионного экрана, состоит из фотонов, рождаемых врезающимися в экран электронами. Электроны испускаются электронной пушкой в задней части кинескопа и направляются к экрану электрическими и магнитными полями. Но не каждый электрон, врезающийся в экран, излучает фотон. Некоторые излучают, а большинство – нет. Грубо говоря, вероятность того, что конкретный электрон испустит квант света, даётся постоянной тонкой структуры α. Другими словами, только один из 137 электронов испускает фотон. Это означает, что α – это вероятность того, что электрон, двигаясь вдоль своей траектории, соблаговолит излучить фотон.
Фейнман не просто рисовал картинки. Он изобрёл набор правил для расчёта вероятностей сложных процессов, изображённых на этих картинках. Иными словами, он изобрёл точный математический аппарат, который предсказывает вероятность любого процесса в терминах простейших событий: пропагаторов и вершин. В конечном итоге вероятности всех процессов в природе сводятся к константам связи, подобных α.
Постоянная тонкой структуры также управляет интенсивностью процессов, представленных обменной диаграммой, которая, в свою очередь, определяет силу электрического взаимодействия между заряженными частицами. Она определяет, насколько сильно атомное ядро притягивает к себе электроны. Как следствие, она определяет размер атома и скорости, с которыми электроны движутся по своим орбитам, и в конечном итоге она управляет силами, действующими между различными атомами, которые позволяют им соединяться в молекулы. Но самое важное то, что мы не знаем, почему она имеет значение 0,00729735257, а не какое-то другое. Законы Физики, обнаруженные в XX веке, оказались очень точными и полезными, но происхождение этих законов остаётся загадкой.
Теория этого упрощённого мира электронов, фотонов и точечных ядер и есть квантовая электродинамика, и её фейнмановская версия оказалась невероятно успешной. С помощью разработанных Фейнманом методов свойства фотонов, электронов и позитронов были описаны с удивительной точностью. Кроме того, если в теорию добавить упрощённый вариант ядра, то с такой же невероятной точностью удаётся описать и свойства простейшего атома – атома водорода. В 1965 году Ричард Фейнман, Джулиан Швингер и японский физик Син-Итиро Томонага получили за работы по квантовой электродинамике Нобелевскую премию.
Конец первого акта.
Если в первом акте театральное действие ограничивалось только двумя персонажами, то во втором акте разворачивается на сцене эпическое полотно с сотнями актёров. Новые частицы, обнаруженные в 1950-х и 1960-х годах, пополнили ряды неуправляемой театральной массовки и на сцене, помимо электронов и фотонов, появились нейтрино, мюоны, тау-лептоны, u-кварки, d-кварки, странные кварки, очарованные кварки, b-кварки, t-кварки, глюоны, W– и Z-бозоны, бозоны Хиггса и другие действующие лица. Никогда не верьте тому, кто говорит, что физика элементарных частиц элегантна. Эта сборная солянка названий частиц отражает такое же нагромождение масс, электрических зарядов, спинов и других свойств. Но, несмотря на обилие и разнообразие действующих лиц, мы знаем, как описать их поведение с огромной точностью. «Стандартная модель» – это название математической конструкции (особого варианта квантовой теории поля), которая лежит в основе современной теории элементарных частиц. Хотя она гораздо сложнее квантовой электродинамики, фейнмановские методы настолько мощные, что и в этот раз они позволяют выразить всё в виде простых картинок. Принципы точно такие же, как в КЭД: всё построено из пропагаторов, вершин и констант связи. Но есть новые актёры и совершенно новые сюжетные линии, одна из которых называется КХД.
Квантовая хромодинамика
Много лет назад я был приглашён в один знаменитый университет прочитать серию лекций на модную тему, называемую квантовой хромодинамикой. Проходя коридорами физического университета, я услышал, как пара студентов обсуждала название моей лекции. Один, рассматривая объявление о лекции на информационном стенде, спросил: «И о чём это всё? Что такое квантовая хромодинамика?» Второй, подумав и почесав в затылке, ответил: «Хм… это, должно быть, новый способ использования квантовой механики для обработки фотографий».
Квантовая хромодинамика (КХД) не имеет дела ни с фотографией, ни даже со светом. КХД – это современная версия ядерной физики. Обычная ядерная физика начиналась с протонов и нейтронов (нуклонов), но КХД шагнула гораздо глубже. Вот уже более сорока лет известно, что нуклоны не являются элементарными частицами, они скорее похожи на атомы или молекулы, только в гораздо меньших масштабах. Если бы мы смогли заглянуть внутрь протона при помощи чрезвычайно мощного микроскопа, то увидели бы, что он состоит из трёх кварков, связанных друг с другом струнами частиц, называемых глюонами . Теория кварков и глюонов – КХД – это более сложная теория, чем КЭД, и я не в состоянии описать её на нескольких страницах. Но основные факты не слишком сложны. Вот список её действующих лиц.
Читать дальшеИнтервал:
Закладка: