Маргарита Акулич - Статистические методы, используемые в маркетинговых исследованиях

Тут можно читать онлайн Маргарита Акулич - Статистические методы, используемые в маркетинговых исследованиях - бесплатно ознакомительный отрывок. Жанр: Прочая научная литература, издательство Литагент Ридеро. Здесь Вы можете читать ознакомительный отрывок из книги онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.

Маргарита Акулич - Статистические методы, используемые в маркетинговых исследованиях краткое содержание

Статистические методы, используемые в маркетинговых исследованиях - описание и краткое содержание, автор Маргарита Акулич, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru
В книге дано лаконичное описание большинства используемых в маркетинге методов и приведено пояснение, для чего они используются. Статистические методы являются для маркетинга одними из основных (если не самыми главными). Поэтому каждый маркетолог должен их знать хотя бы в общих чертах.

Статистические методы, используемые в маркетинговых исследованиях - читать онлайн бесплатно ознакомительный отрывок

Статистические методы, используемые в маркетинговых исследованиях - читать книгу онлайн бесплатно (ознакомительный отрывок), автор Маргарита Акулич
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Регрессия мультиномиальная логистическая

Фото из источника в списке литературы 5 В качестве логистической регрессии - фото 10

Фото из источника в списке литературы [5]

В качестве логистической регрессии мультиномиальной рассматривают общий случай модели логистической регрессии, в ней у зависимой переменной имеются категории в количестве более двух.

Измерение зависимой переменной (ковариаты) в рассматриваемой регрессии возможно в таких шкалах, как порядковая и номинальная. В качестве нее может выступать переменная потребительского выбора торговой марки. Переменные независимые (факторы) могут быть количественными либо категориальными.

В данной модели для каждой из категорий переменной зависимой предусматривается построение уравнения логистической бинарной регрессии. Причем одной из категорий переменной зависимой отводится роль переменной опорной, и происходит сравнение с ней всех других категорий.

Посредством уравнения мультиномиальной логистической регрессии прогнозируется показатель вероятности принадлежности к каждой категории зависимой переменной согласно значениям переменных независимых.

2.4 Пробит-модель регресси. Регрессия Кокса. Анализ временных рядов

Пробит-модель регрессии

Фото из источника в списке литературы 6 Пробитмодель является статистической - фото 11

Фото из источника в списке литературы [6]

Пробит-модель является статистической моделью бинарного выбора, используемой для того, чтобы предсказывать вероятность возникновения какого-то события на базе функции нормального стандартного распределения.

Модель пробит-регрессии, подобно модели логистической регрессии, относят к виду моделей бинарного выбора. По этой причине задачи ее построения и функции такие же, как в логит-модели.

В модели пробит-регрессии выражение расчетного значения зависимой переменной выступает в качестве значения функции нормального стандартного закона распределения. Пробит является значением, для которого исследователи вычисляют функцию нормального стандартного распределения. Имеет место зависимость значения пробита от комбинированных линейных значений факторных переменных. Для пробит-модели (также как и для логит-модели) зависимая переменная – дихотомическая. К факторам в пробит-модели предъявляется требование, чтобы они были количественно выраженными либо категориальными, но преобразованными в переменные дихотомические.

Применение пробит-модели относительно сферы аналогично применению логистической регрессии. Если осуществить моделирование и классификацию по пробит-модели и также по модели логистической регрессии, то результаты окажутся весьма сходными. Но в некоторых случаях результаты могут разниться.

Регрессия Кокса

Фото из источника в списке литературы 7 Регрессионную модель Кокса считают - фото 12

Фото из источника в списке литературы [7]

Регрессионную модель Кокса считают статистической моделью зависимости функции риска от переменных-факторов независимого вида.

Регрессию Кокса рассматривают в качестве модели отличающихся пропорциональностью рисков. Благодаря ей прогнозируют риск наступления события для какого-то объекта и оценивают влияние определенных заранее независимых предикторов (переменных) на данный риск. Риск рассматривают в качестве зависящей от времени функции. Риск не является вероятностью, поэтому его значения могут превышать единицу.

Объектом может быть клиент, для которого в маркетинге практикуется прогнозирование риска наступления некого события. Объект находится в поле зрения априори (то есть его постоянно наблюдают), в любой временной отрезок возможно наступление события, приводящего к его выбытию из группы риска. К примеру, таким событием может оказаться отказ клиента от товара либо услуги компании или его неспособность оплаты кредита.

Конец ознакомительного фрагмента.

Текст предоставлен ООО «ЛитРес».

Прочитайте эту книгу целиком, на ЛитРес.

Безопасно оплатить книгу можно банковской картой Visa, MasterCard, Maestro, со счета мобильного телефона, с платежного терминала, в салоне МТС или Связной, через PayPal, WebMoney, Яндекс.Деньги, QIWI Кошелек, бонусными картами или другим удобным Вам способом.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Маргарита Акулич читать все книги автора по порядку

Маргарита Акулич - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




Статистические методы, используемые в маркетинговых исследованиях отзывы


Отзывы читателей о книге Статистические методы, используемые в маркетинговых исследованиях, автор: Маргарита Акулич. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x