Стивен Хокинг - Вселенная Стивена Хокинга (сборник)
- Название:Вселенная Стивена Хокинга (сборник)
- Автор:
- Жанр:
- Издательство:Литагент АСТ
- Год:2019
- Город:Москва
- ISBN:978-5-17-102285-3
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Стивен Хокинг - Вселенная Стивена Хокинга (сборник) краткое содержание
Вселенная Стивена Хокинга (сборник) - читать онлайн бесплатно ознакомительный отрывок
Интервал:
Закладка:
Современная картина Вселенной возникла совсем недавно – в 1924 году, когда американский астроном Эдвин Хаббл показал, что наша Галактика Млечный Путь – не единственная во Вселенной. Хаббл, в сущности, доказал существование множества других галактик, разделенных огромными объемами пустого пространства [7] Первым, кто предположил, что некоторые туманности, видимые на небе, могут быть отдельными галактиками, был немецкий философ Иммануил Кант. Эту мысль он высказал в своем трактате, опубликованном в 1755 году. Первое надежное доказательство того, что туманность Андромеды не является частью Млечного Пути, а представляет собой другую галактику, получено эстонским астрономом Эрнстом Эпиком, который в 1918 году определил расстояние до туманности. Хаббл первым стал массово определять расстояния до галактик. – Прим. перев.
. Для этого ему потребовалось определить расстояния от Земли до других галактик. Но галактики так далеки, что, в отличие от близких звезд, выглядят совершенно неподвижными. Поэтому Хабблу пришлось прибегнуть для определения расстояния к косвенным методам. Так, видимый блеск звезды зависит от двух факторов: от того, сколько света звезда излучает за единицу времени (то есть ее светимости), и от того, насколько она удалена от нас (то есть от расстояния до Земли). Мы можем вычислить светимости близких звезд по их видимому блеску и расстоянию. И наоборот, если бы мы знали светимости звезд в других галактиках, то могли бы определить расстояния до этих звезд, измеряя их видимый блеск. Хаббл обратил внимание, что близкие звезды определенного типа, для которых удается определить расстояния, всегда имеют одну и ту же светимость, и предположил, что если найти в далекой галактике звезды таких типов, то можно принять их светимость равной светимости аналогичных звезд в солнечной окрестности и на этой основе рассчитать расстояние до галактики. Если расстояния, получаемые таким образом по нескольким звездам конкретной галактики, окажутся примерно одинаковыми, то такую оценку вполне можно считать заслуживающей доверия.
Хаббл таким образом определил расстояния до девяти разных галактик. Теперь мы знаем, что Млечный Путь – наша Галактика – это всего лишь одна из сотен миллиардов галактик, доступных взору современных телескопов, а галактика, в свою очередь, состоит из сотен миллиардов звезд. На рисунке 3.1 изображена спиральная галактика, которая выглядит примерно как наша для наблюдателя, обитающего в совершенно другой области Вселенной. Мы живем в медленно вращающейся галактике поперечником около 100 000 световых лет. Звезды в спиральных рукавах совершают один оборот вокруг галактического центра примерно за несколько сотен миллионов лет. Наше Солнце – заурядная, средних размеров желтая звезда, расположенная неподалеку от внутренней кромки одного из спиральных рукавов. Мы проделали большой путь со времен Аристотеля и Птолемея, которые считали Землю центром Вселенной!

Рис. 3.1
Звезды так далеки, что кажутся всего лишь светящимися точками. Мы не в состоянии различить их размер и форму. Но как мы можем различать звезды разных типов? У огромного большинства звезд существует только одна характерная особенность, которую мы можем наблюдать: цвет их излучения. Ньютон обнаружил, что если солнечный свет пропустить через треугольную призму из стекла, то он расщепляется на составляющие его цвета (спектр), совсем как в радуге. Направив телескоп на звезду или галактику, можно наблюдать спектр излучения этого объекта. Спектры звезд различаются, но соотношение яркостей различных цветов всегда соответствует соотношению яркостей цветов в излучении раскаленного тела. (Излучаемый любым непрозрачным раскаленным объектом свет всегда имеет характерный спектр, который зависит только от его температуры, – это тепловой спектр. Это значит, что по спектру излучения звезды можно определить ее температуру.) Более того, некоторые цвета в спектре звезды отсутствуют, и набор этих цветов разный у разных звезд. Поскольку мы знаем, что каждый химический элемент поглощает характерный для него набор цветов, то, сравнив набор цветов, которые отсутствуют в спектре звезды, можно точно определить, какие элементы присутствуют в ее атмосфере.
В 20-х годах XX века астрономы начали исследовать спектры звезд в других галактиках и обнаружили одну странность: в спектрах этих звезд отсутствовали те же характерные наборы цветов, что и в спектрах звезд нашей Галактики. Более того, все эти цвета оказывались смещенными на одну и ту же относительную величину в красную сторону спектра. Чтобы осознать следствия этого факта, потребуется разобраться в том, что представляет собой эффект Доплера. Как мы знаем, видимый свет состоит из колебаний, или волн, электромагнитного поля. Длина волны (то есть расстояние между двумя последовательными гребнями) видимого света чрезвычайно мала и составляет от четырех до семи десятимиллионных метра. Человеческий глаз воспринимает свет волн разной длины как разные цвета – самый «длинноволновой» свет находится на красном конце спектра, самый «коротковолновой» – на синем.
Теперь представьте себе источник света – например звезду, – расположенный на постоянном расстоянии от нас и излучающий световые волны постоянной длины. Очевидно, что в этом случае длина волны, которую мы воспринимаем, в точности равна длине волны, которую звезда излучает (гравитационное поле галактики недостаточно сильное, чтобы оказать на нее существенное влияние). А теперь представим себе, что этот источник света начинает двигаться к нам. В момент, когда он излучает очередной гребень волны, источник оказывается ближе к нам, и поэтому расстояние между гребнями будет меньше, чем когда свет излучала неподвижная звезда. Это значит, что принимаемые нами волны будут короче, чем в случае неподвижной звезды. Соответственно, если источник света удаляется от нас, то принимаемые волны от этого источника окажутся длиннее. Отсюда следует, что спектры удаляющихся звезд смещены в красную сторону спектра (красное смещение), а спектры объектов, движущихся к нам, смещены в голубую сторону. С этим соотношением длины и скоростью волны, называемым эффектом Доплера, мы сталкиваемся и в повседневной жизни. Прислушайтесь, когда автомобиль проносится мимо вас по дороге: пока он приближается, звук его двигателя, или сигнала, выше (что соответствует меньшей длине волны и более высокой частоте звуковых волн), а после того как автомобиль проедет мимо и станет удаляться, – ниже. Аналогично ведут себя свет и радиоволны. И действительно, дорожные службы используют эффект Доплера для определения скорости автомобиля, измеряя длину волны отраженных от него радиоимпульсов.
Читать дальшеИнтервал:
Закладка: