Александр Гордон - Диалоги (октябрь 2003 г.)
- Название:Диалоги (октябрь 2003 г.)
- Автор:
- Жанр:
- Издательство:неизвестно
- Год:неизвестен
- ISBN:нет данных
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Александр Гордон - Диалоги (октябрь 2003 г.) краткое содержание
В настоящем сборнике представлены стенограммы ночных передач-диалогов телевизионной программы Александра Гордона:
1. Этология любви.
2. Парадигма современной генетики.
3. Нейтрино.
4. Миграции индоевропейцев.
5. Квантовый мир и сознание.
6. Пульсирующие ледники.
7. Феномен марганца.
8. Культурный ландшафт.
9. Нейрональная пластичность.
10. Эктоны.
11. Три кризиса Розанова.
Диалоги (октябрь 2003 г.) - читать онлайн бесплатно полную версию (весь текст целиком)
Интервал:
Закладка:
В.Л.Это-то как раз было трагедией для экспериментаторов, потому что заранее постулируется, что частица не имеет массы. Что еще можно искать? Но, тем не менее, надо отдать должное экспериментаторам того поколения – они начали искать массу с самого начала. Хотя уже существовала гипотеза о Вейлевском нейтрино, ужасно красивая.
С.Г.Автоматически предсказывалось, что масса ноль.
В.Л.Да, масса ноль и зачем искать? Но, тем не менее, поиски начались буквально почти с момента появления гипотезы о существовании нейтрино. И в этом деле очень большую роль сыграл распад трития, потому что тритий оказался наиболее, как говорится, «комильфо» для этих экспериментов, поскольку он обладал очень маленькой, по меркам радиоактивных веществ, энергией распада. И поэтому уже сразу было видно: раз он существует, распадается, значит, масса нейтрино меньше энергии перехода. А это означало, что масса нейтрино меньше, чем масса электрона, почти в сотню раз. Но тогда несложно предположить, что, наверное, она близка к нулю.
А.Г.Он и есть.
В.Л. А вот есть или нет – это тогда абсолютно не было известно.
С.Г.Оказалось, что очень красивые теоретические соображения позволяют понять, что масса нейтрино – ноль. Но я хотел бы продолжить.
Дальше две пары американских физиков Фейнман и Гелман, с одной стороны, и еще раньше Маршак и Сударшан использовали идею спиральности и решили, что все частицы – и массивные, и электроны, и протоны, – имеющие массу, тоже входят слегка левым образом. На основе этого предположения им удалось создать теорию бета-распада, а к тому времени были известны и другие события, где участвовали бета-силы.
И одно из первых предположений возникло в 46-ом году, когда выяснилось, что частицы, предполагали юкавскими, в веществе живут долго. Понтекорво предположил, что эти мю-мезоны захватываются ядрами наподобие того, как иногда электроны захватываются ядрами с испусканием нейтрино. Отсюда пошла гипотеза об универсальности слабых взаимодействий, что бета-силы не одиночные силы, а все распады с испусканием нейтрино и других частиц, связаны со слабыми взаимодействиями. А форма взаимодействия была такая, как если бы два тока обменивались частицей, имеющей спин единицу. Когда это было выяснено, была создана единая теория электрослабых взаимодействий, объединили слабые взаимодействия с электромагнитными. Точно так же, как в 19-ом веке Фарадей и Максвелл обнаружили единство магнитных и электрических сил, так обнаружено было и это единство слабых и электромагнитных взаимодействий.
Нейтрино в этом сыграло выдающуюся роль, потому что так называемый «V-А вариант» был построен по типу взаимодействия левых и правых частиц. И это блестяще подтвердилось. Принципы, на которых была построена теория, потом использовались уже в теории сильных взаимодействий – взаимодействий кварков. Возникла новая наука «квантовая хромодинамика».
Последние открытия, о которых Владимир Михайлович будет говорить, показывают, что нейтрино поведет нас еще и дальше, возможно, действительно к фундаментальнейшим следствиям.
В.Л.Вглубь Вселенной.
А.Г.Как?
В.Л.Нейтрино вместе с реликтовым фотоном является самой распространенной частицей в мире, то есть на каждый, скажем, нуклон или же тяжелую частицу приходится примерно десять в девятой степени нейтрино. То есть, вообще говоря, мы находимся в нейтринном море…
С.Г.«Нейтрино вокруг нас».
В.Л.Особенно большую роль это играло в момент биг-бенга, то есть рождения Вселенной. Тогда вообще существовали только электромагнитная плазма и нейтрино. А потом, при расширении, нейтрино смогли бы взаимодействовать друг с другом и за счет флуктуации образовать зародыши галактик…
С.Г.Если бы у них была масса.
В.Л.И вот теперь вопрос: галактики-то существуют. А действительно ли нейтрино вызвало это? По исследованиям реликтового излучения, действительно, нейтрино вроде бы имеют малую массу и способны вызвать эти флуктуации. Теперь дело за подтверждением этого экспериментами на Земле.
С.Г.Но, в конечном счете, твой эксперимент показывает, что это не так. Нейтрино играют во Вселенной колоссальную роль, но не…
А.Г.Дайте, я попробую задать вопрос, а вы поймете, понимаю я, о чем идет речь или нет. Нейтрино много, и они обладают маленькой, но массой. За счет общего количества этих частиц можно предположить общую массу нейтрино во Вселенной и таким образом избавиться от давно мучащего нас вопроса: почему та материя, которую мы имеем, занимает такой незначительный процент? Так теперь, оказывается, списать это на нейтрино не получается, даже если мы учитываем, что нейтрино может изменяться?
В.Л.Несомненно, что нейтрино в начале, примерно, по-моему, 400000 лет после биг-бенга, играли лидирующую роль в образовании флуктуации. Я думаю, что…
С.Г.Нет, нет. Вы очень хорошо поняли тему, потому что как раз из этих соображений Яков Борис Зельдович и я оценили верхний предел на массу всех типов нейтрино. Он тогда был примерно в тысячу раз, скажем, меньше, чем масса электрона. Сейчас эта цифра опять уменьшена, до 20 электрон-вольт… Но ваш вопрос совершенно правильный. Потому что из этих соображений мы и оценили в свое время верхнюю границу. Но… оказалось, что существует три типа нейтрино. Массу электронного нейтрино Владимир Михайлович с рекордной точностью ограничил верхним пределом – два электрон-вольт сейчас, да?
В.Л.Да.
С.Г.То лабораторные эксперименты для мюонного нейтрино дают верхнюю границу в 300 килоэлектрон-вольт, это почти 160 масс электрона. А для так называемого тау-нейтрино прямые эксперименты дают массу 15 миллионов электрон-вольт. То есть в 30 раз больше. Это прямые солнечные эксперименты. А вот из космологических данных на все эти массы можно было дать меньший верхний предел. Но в принципе, этот предел позволял бы, как говорит Владимир Михайлович, соорудить, так сказать, галактики, скопление галактик и так далее.
В.Л.А также звезды, планеты и человека…
С.Г.Но благодаря экспериментам последних лет, которые произвел Владимир Михайлович, оказалось, что так, к сожалению, не получается. Не из-за нейтрино образовались скопления галактик и так далее.
А.Г.То есть, нейтрино играли роль в образовании структуры Вселенной, но не только они.
С.Г. Они маленькую роль играли, скорее всего.
Я хотел пояснить вот какую вещь. Почему реально было зарегистрировать нейтрино? Почему в этом сомневались, и почему все-таки это удалось? Оказывается, нейтрино с реакторной энергией или то, что от Солнца идет, может пролететь десять в двадцатой сантиметров в плотном веществе, в чугуне, это в 10 миллионов раз больше, чем расстояние от Солнца до Земли. И только на этом расстоянии есть вероятность, близкая к двум третьим, что оно вызовет какую-то реакцию.
Читать дальшеИнтервал:
Закладка: