Александр Гордон - Диалоги (сентябрь 2003 г.)

Тут можно читать онлайн Александр Гордон - Диалоги (сентябрь 2003 г.) - бесплатно полную версию книги (целиком) без сокращений. Жанр: Прочая научная литература. Здесь Вы можете читать полную версию (весь текст) онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.

Александр Гордон - Диалоги (сентябрь 2003 г.) краткое содержание

Диалоги (сентябрь 2003 г.) - описание и краткое содержание, автор Александр Гордон, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru

В настоящем сборнике представлены стенограммы ночных передач-диалогов телевизионной программы Александра Гордона:

1. Эффекты сверхмалых доз.

2. Рождение художественного текста.

3. Предел времени.

4. Солнечная система.

5. Луна.

6. Солнечная активность.

7. Венера.

8. Судьбы планет.

9. Астероидная опасность.

10. Грибы.

11. Класс интеллектуалов.

12. Математика нелинейного мира.

13. Синхротронное излучение.

Диалоги (сентябрь 2003 г.) - читать онлайн бесплатно полную версию (весь текст целиком)

Диалоги (сентябрь 2003 г.) - читать книгу онлайн бесплатно, автор Александр Гордон
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Такова ситуация в математике, таково влияние моды, которое нужно преодолевать.

Я хочу сейчас перескочить к квантовой физике, раз уж мы стали об этом говорить. Итак, мы подозреваем, что нужен новый язык. Но как его отыскать? Природа нам тихим голосом дает наводящие указания – и математика тоже. Если мы себе признаемся честно: «я не знаю, что такое дифференциальное уравнение», значит, нужно КОНЦЕПТУАЛЬНО определить, что это такое, и нужны какие-то критерии того, что я действительно это знаю. Например, если я точно знаю что такое дифференциальное уравнение, то я могу точно сказать, что такое его симметрии.

Я раньше вам показал не дифференциальные уравнения, а их запись, как бы их паспорта. Паспорт расскажет бюрократу много полезных вещей, но сути владельца он не раскроет. И точно так же, по этой записи вы мало что узнаете о дифференциальных уравнениях. Но вернемся к языку. Если вы спросите обычного математика, я имею в виду не специалиста по дифференциальным уравнениям, какие он знает дифференциальные уравнения, то нормальный математик вам скажет, что уравнения бывают (я немножко огрубляю) эллиптические, гиперболические и параболические. И больше ничего. Это тоже показывает, что на самом деле мы не знаем, что такое дифференциальное уравнение. И понять это можно, попытавшись нарисовать его портрет.

Когда мы изучаем алгебру, мы рисуем графики функций. Скажем, геометрический образ уравнения «икс квадрат плюс игрек квадрат равняется единице» есть окружность. Это то, чему учат в старших классах школы. Это соответствие между алгеброй и геометрией можно использовать в двух направлениях – можно с помощью алгебры выводить свойства геометрических фигур и, наоборот, глядя на геометрический образ, понять, как решить алгебраическую проблему. Например, великую теорему Ферма, которая столько шума наделала, именно так и решили – создали, это был длительный процесс, геометрию, которая позволяла придти к решению.

Так вот, сейчас мы знаем, как найти геометрический портрет (аналогичный портрету алгебраического уравнения) уравнения в частных производных. Это вещь, которую я не могу попробовать здесь описать. Это нечто нестандартно бесконечномерное, и даже некоторые математики перед этим образом теряют психологическое равновесие. Сейчас даже идет полемика. Некоторые считают, что все это нужно рассматривать на конечном уровне, не на бесконечном. Но это пройдет, потому что это уже позволило решить ряд очень важных задач.

И вот когда мы увидели этот бесконечномерный объект, мы увидели там особое дифференциальное исчисление. Этот объект, если воспользоваться современным языком, – со многими «прибабахами», и эти «прибабахи» называются геометрическими структурами. Стандартное дифференциальное исчисление, которое уважает эти структуры, это – ВТОРИЧНОЕ ДИФФЕРЕНЦИАЛЬНОЕ ИСЧИСЛЕНИЕ. И что меня радует – это то, что новый язык для квантовой теории поля родился сам собой, естественно. Это вторичное дифференциальное исчисление очень хорошо вписывается в проблематику квантовой теории поля.

Например, траектория вторичного векторного поля, это не обычная кривая, а такая, которая удовлетворяет «принципу неопределенности». Она, вообще говоря, не существует, существует виртуально. Но когда мы ее загоним в ящик, как говорят физики, тогда она станет вполне определенной.

Кроме того, в последние годы были наблюдены поразительные совпадения. Физики пытались своими методами прояснить некоторые темные места квантовой теории поля. Мы же размышляли над «дурацкой проблемой» о том, что такое дифференциальные уравнения. Потом совершенно независимо обнаружили, что результаты физиков – это элементы уже «нашей» готовой теории. Мы даже и не думали, что это как-то связано с квантовой физикой. Речь идет, я скажу специалистам, об «антиполях», о «духах» и т.п. Кстати, это научный термин – «дух», ghost. Этот термин сами физики выдумали, в физике есть другие мистические слова – аномалия, перенормировка и так далее. Они указывают на то, что сам этот язык ненормален. Это на самом деле, я бы сказал так, полублатной язык. Физикам просто уже не хватает слов, чтобы объяснить происходящее.

Я сейчас абсолютно уверен, что ВТОРИЧНОЕ дифференциальное уравнение превратит квантовую физику в точную науку в том же смысле, каковой является классическая физика, благодаря языку «первичных» дифференциальных уравнений.

Вот, пожалуй, главное, что я хотел сказать. И еще хочу отметить, что вторичное дифференциальное уравнение – это язык очень интересный. Покажите мне, пожалуйста, картинку 12. Что общего у квантовой теории поля с этой картинкой? Сейчас я вам расскажу, что такое алгебраическая топология. Алгебраическая топология, если сказать попросту, это «исчисление дыр». На этом рисунке между точками А и B есть нульмерная дыра. Чтобы соединить точки А и B вы должны построить одномерный мост. При этом можно исчислять дырки. Вы мост переходите в одном направлении, поэтому дыра, как говорят математики, ориентирована. На этом чертеже показано, как можно складывать дырки. Если вы дырку А–B сложите с дыркой B–С – получите дырку С–А. Это теория нульмерных дырок.

Пожалуйста, следующий слайд. На этом торе я поясню вам теорию одномерных дырок. На верхнем торе вы видите две одномерных дырки. У одной край – красная линия, у другой – зеленая линия. Почему это дырка? Потому что, скажем, красный контур вы не можете стянуть в точку, двигаясь только по поверхности тора. Дырки можно складывать. Что значит, прибавить красную дырку саму к себе? Это значит два раза обойти ее в нужном направлении. А если вы возьмете трехкратную красную дырку и двукратную зеленую и сложите их, получится красивый трилистник на поверхности тора.

Так вот, бывают дырки двумерные, n-мерные, любой размерности. Это называется гомологиями. А функции на дырках являются когомологиями. Топологическую форму тела, если не принимать во внимание ее метрические размеры, можно довольно точно описать, сказав, какие дырки имеются и какой размерности. Этими данными можно описать топологию многомерной поверхности или, как мы говорим, многообразия.

А теперь давайте перейдем к нелинейным дифференциальным уравнениям и квантовой физике. Так вот, функции на дырках называются когомологиями. И если вы возьмете пластинку из какого-то металла и начнете ее сгибать, вы можете себе представить, что там образуются инфинитезимальные дырки. В зависимости от материала эти инфинитезимальные дырки будут разной формы, и они, эти дырки, описываются когомологиями типа Спенсера. Язык вторичного дифференциального исчисления когомологичен: он исчисляет эти инфинитезимальные дырки. Тут есть чему удивиться: элементарные частицы и исчисление бесконечно малых дыр!?

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Александр Гордон читать все книги автора по порядку

Александр Гордон - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




Диалоги (сентябрь 2003 г.) отзывы


Отзывы читателей о книге Диалоги (сентябрь 2003 г.), автор: Александр Гордон. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x