Сергей Мусский - 100 великих чудес техники
- Название:100 великих чудес техники
- Автор:
- Жанр:
- Издательство:«Вече»
- Год:2001
- Город:Москва
- ISBN:5-7838-1013-4
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Сергей Мусский - 100 великих чудес техники краткое содержание
Лучшие достижения человеческой цивилизации могут вызывать только восхищение могуществом разума человека и искусными деяниями человеческих рук. Перед читателями откроется мир чудес техники, заставляющий усомниться в словах Эйнштейна, что процесс научных открытий – это непрерывное бегство от чудес.
100 великих чудес техники - читать онлайн бесплатно полную версию (весь текст целиком)
Интервал:
Закладка:
Однако, кроме всего этого, цифровые камеры имеют и еще целый ряд возможностей, более характерных для компьютеров, нежели для фотоаппаратов.
Помимо оптической системы цифровая камера имеет достаточно мощный управляющий процессор, чтобы производить, кроме всего прочего, сложный анализ экспозиции и в ничтожные доли секунды принимать решение о режиме съемки, после чего полученное изображение обрабатывается. Быстрая шина данных позволяет стремительно сокращать время готовности к приему следующего кадра. И в этом смысле цифровые фотоаппараты уже догнали, например, видеокамеры и продолжают «сливаться» с ними. Цифровые камеры имеют оперативную память: «впаянную», как на старых компьютерах, или более прогрессивную, внешнюю, на сменных флэш-картах. Их неотъемлемая принадлежность – винчестер или стандартное ATA-устройство, а порой даже флоппи-дисковод, или SCSI-привод. Цифровая камера позволяет создавать собственные программы съемки и обработки изображения. «Звуковая карта», микрофон или динамик дают возможность вести запись речевых комментариев в процессе съемки, которые позднее можно прослушивать при воспроизведении.
Камера не обделена и устройствами связи: внешний интерфейс по быстрым USB, FireWire или SCSI-шинам, наряду с уже ставшими банальными и устаревшими последовательными (RS-232) и параллельными портами (для непосредственной печати на принтерах). Некоторые современные камеры имеют помимо этого еще и инфракрасный порт или даже сетевой интерфейс. Не говоря уже о различных кнопках-джойстиках, в том числе и с легко узнаваемыми названиями.
Для просмотра кадров, отснятых цифровой камерой, есть множество способов. Прежде всего, можно сразу увидеть их на встроенном жидкокристаллическом дисплее. Можно подать информацию на экран телевизора, подключившись к нему через стандартный кабель. Тот же кабель соединит камеру и с видеомагнитофоном, который без всяких проблем перепишет с ее пленки кадры, как обычные телевизионные. Снимки размером с открытку можно распечатать на специальном принтере. Наконец, не остается в стороне и компьютер: изображения можно подать на его порт через отдельный блок.
В общем, действительно цифровая камера – это настоящий мультимедийный компьютер, в котором есть где попробовать свои силы и серьезному программисту, и любителю.
До недавнего времени цифровая камера отставала от обычной лишь по разрешающей способности снимков. На то были объективные причины. Дело в том, что объемы фотофайлов в их изначальном, «сыром» виде очень велики. Чтобы сравняться с кадром 35-миллиметровой пленки, они должны в зависимости от качества светочувствительного слоя содержать до 18 миллионов пикселов (наименьших различимых любыми средствами элементов изображения). Причем каждый пиксел несет отнюдь не один бит информации. Это справедливо только для черно-белого изображения, без всяких полутонов. А для полноценной передачи градаций серого требуется как минимум 8 бит, да еще по столько же на каждый из трех основных цветов. Вот откуда берутся 24, 32 или даже 36 бит на пиксел.
Поэтому оцифрованные кадры с хорошим разрешением и цветопередачей с самого начала были «тяжеловаты» даже для довольно мощных компьютеров, а не только для процессоров цифровых фотокамер. Но ряд достижений последнего времени позволяет решить проблему.
Во-первых, резко возросло быстродействие упомянутых процессоров. Во-вторых, подешевели ПЗС-матрицы высокой плотности, равно как и устройства памяти – и для компьютеров, и для цифровых фотокамер. В итоге аппаратура с высоким разрешением становится доступной широким массам любителей. Наконец, в-третьих, высокими темпами разрабатываются все более быстрые и эффективные алгоритмы сжатия изображений. Так удается в несколько раз сокращать огромные объемы графических файлов и, соответственно, увеличивать число кадров в памяти камеры и убыстрять их перезапись в компьютер. Ну а там уже можно снова разворачивать файлы изображений до полного, первоначального разрешения.
И еще, как оказалось, можно изменить конструкции самой ПЗС-матрицы. В Японии недавно разработали так называемую супер-ССО-матрицу. В отличие от уже привычной прямоугольной структуры расположения фотодиодов, образующих единичный элемент изображения – пиксел, в супер-ПЗС-матрице фотодиоды имеют восьмиугольную форму и располагаются друг относительно друга под углом сорок пять градусов. Благодаря такой «сотовой» структуре фотодиоды стоят ближе друг к другу, то есть увеличилась относительная площадь, занимаемая ими. В результате значительно увеличилась эффективная площадь поверхности, с которой снимается свет. В конечном счете увеличивается чувствительность такой матрицы, то есть повышается уровень сигнала с единицы площади ПЗС-матрицы и, как следствие, снижаются паразитные шумы. По мнению компании-производителя, таким образом, увеличивается эффективная поверхность в 1,6 раза, улучшается цветовоспроизведение и соотношение «сигнал – шум», расширяется динамический диапазон, уменьшается расход энергии, увеличивается чувствительность и разрешение изображений.
Фотография, получаемая с такой супер-ПЗС-матрицы с разрешением в 1,3 мегапиксела, по качеству практически аналогична получаемой с традиционной «квадратной» матрицы с разрешением в 2,1 мегапиксела.
Цифровая камера все еще дороже обычных. Впрочем, в действительности она не так уж и дорога, если учесть ее преимущества. Она экономит время, а расходы по ее обслуживанию, в отличие от пленочной, можно свести практически к нулю. Ведь память цифровой камеры можно использовать многократно, аккумуляторы перезаряжать, а снимки не выводить на бумагу, а хранить только в электронном виде.
Современные часы
Время быстротечно. Чтобы уловить его ритм, человек придумал часы. Солнечные, лунные и звездные часы – механизм их подсказан самой природой, – на Востоке знали уже в глубокой древности. В V веке до нашей эры с ними познакомились греки, а два столетия спустя – римляне. Но пользоваться природными часами можно было лишь в ясную погоду. Тогда на помощь пришли водяные, огненные и песочные часы.
На рубеже XII-XIII веков появились часы механические. Имя изобретателя неизвестно, но придуманная им конструкция механизма в основных деталях сохранилась до нашего времени – достойный памятник неизвестному гению.
Первые колесные башенные часы начали отмерять почасовым боем время лондонцев на башне Вестминстерского аббатства в 1288 году, а в России они зазвонили на Спасской башне в 1404 году по указу сына Дмитрия Донского великого князя Василия Дмитриевича.
В XV веке часы с гирями украшали интерьеры дворцов, а изобретение пружины в начале XVI века в Нюрнберге позволило заключать механизм в корпус любой формы.
Читать дальшеИнтервал:
Закладка: