Ричард Докинз - Слепой часовщик
- Название:Слепой часовщик
- Автор:
- Жанр:
- Издательство:неизвестно
- Год:неизвестен
- ISBN:нет данных
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Ричард Докинз - Слепой часовщик краткое содержание
Книга посвящена современным аспектам теории эволюции. Докинз — убежденный дарвинист, и в свойственном ему легком стиле, но без всяких упрощений, излагает наиболее сложные положения теории Дарвина настолько ясно, что в верности этой теории не остается никаких сомнений.
The Blind Watchmaker by Richard Dawkins. Перевод с английского: Анатолий Протопопов.
Слепой часовщик - читать онлайн бесплатно ознакомительный отрывок
Интервал:
Закладка:
В этом случае мы можем быть абсолютно уверены в том, что два вида птиц изобрели эхолокацию независимо от летучих мышей и независимо друг от друга. Ход рассуждения здесь обычен для эволюционистов. Мы смотрим на все многие тысячи видов птиц и отмечаем, что почти никто из них не использует эхолокации. Только два маленьких изолированных рода птиц используют её, и они не имеет ничего общего собой, за исключением того, что оба живут в пещерах и используют эхолокацию. Да мы полагаем, что все птицы и летучие мыши имеют общего предка (если проследить их линии достаточно далеко), и что этот общий предок был одновременно общим предком всех млекопитающих (включая нас самих) и всех птиц. Подавляющее большинство млекопитающих и птиц не используют эхолокацию, и крайне вероятно, этот предок также не использовал её (и при этом он не летал; полёт — еще один пример технологии, которая «изобреталась» неоднократно и независимо). Из этого следует, что технология эхолокации возникла независимо у летучих мышей и птиц — также, как она была независимо разработана британскими, американскими и немецкими учёными. Аналогичные рассуждения — в меньшем масштабе, приводят к заключению, что общий предок гуахаро и пещерного салангана также не использовал эхолокацию, и что эти два рода развили одну и ту же технологию независимо друг от друга. В классе млекопитающих, летучие мыши — не единственная группа, независимо развившая технологию эхолокации. Несколько различных видов млекопитающих, например землеройки, крысы и тюлени, кажется немного используют эхо, как и слепые люди, но единственные животные, способные конкурировать с летучими мышами в совершенстве эхолокации — китообразные. Китообразные подразделяются на две большие группы — зубастых и усатых китов. Обе группы, конечно, являются млекопитающими, происходящими от живших на земле предков, и они, возможно, «изобрели» китовый образ жизни независимо друг от друга и даже происходят от различных сухопутных форм. Зубастые киты включают кашалотов, касаток и различные разновидности дельфинов. Все они охотятся на относительно крупную добычу, такую, как рыба и кальмары, которых они хватают челюстями. Из зубастых китов только дельфины полностью освоили и развили совершенное эхолокационное оборудование в своих головах.
Дельфины испускают быстрые трели высокочастотных щелчков, как звуковые, так и ультразвуковые. Вероятно, что «дыня» — вспученный купол в передней части головы дельфина, выглядящий (забавное совпадение!) похожим на причудливо вспученный купол радара самолёта «раннего предупреждения о нападении» Нимрод, имеет некоторое отношение к излучению звуковых сигналов вперёд, но в точности его работа непонятна. Как и у летучих мышей, у дельфинов есть относительно низкая «круизная частота» щелчков, повышающаяся до высокоскоростного гудения (400 щелчков в секунду), когда животное близко к добыче. Даже «низкая» круизная частота довольно велика. Живущие в грязной воде речные дельфины, вероятно, наиболее квалифицированные эхолокаторы, но некоторые дельфины открытого моря тоже показали на испытаниях довольно хорошие результаты. Атлантический дельфин-бутылконос может различать круги, квадраты и треугольники (и аналогичные стандартизированные фигуры), используя только гидролокатор. Он может распознать, какая из целей ближе, когда разность расстояний всего 7 сантиметров с расстояния примерно 6 метров. Он также может обнаружить стальную сферу размером в половину размера мяча для гольфа на удалении 60 метров. Эти результаты не столь хороши, как зрение человека при хорошем свете, но, вероятно, лучше, чем зрение человека при свете луны.
Есть интригующее предположение, что у дельфинов есть потенциальные возможности без особого труда передавать друг другу «мысленные картины». И всё, что им бы потребовалось для этого — это использовать свои многосторонние таланты имитаторов звуков, которыми они бы имитировали эхо от конкретного объекта. Так они могли передавать друг другу мысленные картины таких объектов. Нет свидетельств, что дельфины так и делают. Теоретически так же могли бы делать летучие мыши, но дельфины представляются более вероятными кандидатами, потому что они сами по себе более социальны. Вероятно, они к тому же «умнее», но не факт, что это уместная характеристика. Инструментарий, который был бы необходим для коммуникации эхокартинами, не сложнее того, которым и летучие мыши, и дельфины уже располагают для эхолокации. И, казалось бы, имеется нетрудный, постепенный континуум между использованием голоса для производства эхо и использованием его для подражания эхо.
Получается, что по крайней мере две группы летучих мышей, две группы птиц, зубастых китов и — вероятно, в меньшей степени — несколько других видов млекопитающих, независимо сошлись на технологии сонара в продолжении последней сотни миллионов лет. У нас нет способа узнать, использовали ли какие-то другие, ныне вымершие животные (может быть, птеродактиль?) — эту технологию независимо. Не найдено ни насекомых, ни рыб, которые бы использовали сонар, но есть две весьма различающиеся группы рыб, одна в Южной Америке, другая — в Африке, которые развили в чём-то подобную навигационную систему, которая выглядит примерно столь же совершенной и которая может быть связана с решением (но другим) той же самой проблемы. Это так называемые «слабоэлектрические рыбы». «Слабоэлектрические» рыбы отличаются от сильноэлектрических тем, что последние используют электрическое поле не для навигации, а оглушения добычи. Кстати, техника оглушения тоже была независимо изобретена несколькими неродственными группами рыб, например «электрическими угрями» (которые не являются настоящими угрями, но их форма конвергентна с настоящими) и электрическими скатами.
Южноамериканские и африканские слабо-электрические рыба неродственны друг другу, но обе живут сходных водах своих континентов, водах, которые слишком мутны, чтобы зрение в них было эффективными. Используемая ими физическая сущность — электрические поля в воде — даже более чужда нашему сознанию, чем таковая у летучих мышей и дельфинов. У нас есть хотя бы какое-то субъективное восприятие эхо, но у нас нет почти никаких субъективных представлений о том, на что могло бы быть похоже восприятие электрического поля. Пару столетий назад мы даже не знали о существовании электричества. Как субъективные личности, мы не можем эмпатизировать электрической рыбе, но как физики, мы можем их понять. На обеденной тарелке легко увидеть, что мышцы с каждой стороны любой рыбы построены, как ряд сегментов в батарею мускульных элементов. У большинства рыб они сокращаются последовательно, изгибая тело волнами, продвигающими его вперёд. У электрических рыб, как сильно, так и слабо электрических, они стали батареей в электрическом смысле. Каждый сегмент («элемент») батареи вырабатывает напряжение. Эти элементы соединены последовательно по длине рыбы, и их напряжения суммируются так, что у сильноэлектрической рыбы (типа электрического угря) вся батарея вырабатывает импульс до 650 вольт при токе до 1 ампера. Батарея электрического угря достаточно мощна, чтобы оглушить человека. Слабо электрическая рыба не нуждается в высоких напряжениях и токах для своих целей, которые состоят только в сборе информации.
Читать дальшеИнтервал:
Закладка: