Николай Печуркин - Энергия и жизнь

Тут можно читать онлайн Николай Печуркин - Энергия и жизнь - бесплатно полную версию книги (целиком) без сокращений. Жанр: sci-biophys, издательство Наука, сибирское отделение, год 1988. Здесь Вы можете читать полную версию (весь текст) онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.
  • Название:
    Энергия и жизнь
  • Автор:
  • Жанр:
  • Издательство:
    Наука, сибирское отделение
  • Год:
    1988
  • Город:
    Новосибирск
  • ISBN:
    нет данных
  • Рейтинг:
    4/5. Голосов: 81
  • Избранное:
    Добавить в избранное
  • Отзывы:
  • Ваша оценка:
    • 80
    • 1
    • 2
    • 3
    • 4
    • 5

Николай Печуркин - Энергия и жизнь краткое содержание

Энергия и жизнь - описание и краткое содержание, автор Николай Печуркин, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru

Что движет эволюцию жизни на нашей планете? В каком направлении развивается жизнь? Отчего «процветают» примитивные паразиты? Может ли разум человека влиять на судьбы Вселенной? На эти (и близкие им) вопросы делает попытку ответить автор, развивая энергетический подход к изучению живой природы.

Книга будет интересна для биологов, физиков, химиков, биофизиков, а также всех интересующихся общими вопросами развития.

Энергия и жизнь - читать онлайн бесплатно полную версию (весь текст целиком)

Энергия и жизнь - читать книгу онлайн бесплатно, автор Николай Печуркин
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать
Рис 5 Сравнение структур прокариотной а и эукариотной б клеток Маргелис - фото 6

Рис. 5. Сравнение структур прокариотной (а) и эукариотной (б) клеток [Маргелис, 1983].

а: 1 — жгутик, 2 клеточная мембрана, 3 — нуилеоид (генофор), 4 — малые рибосомы, 5 нецеллюлозная стенка; б: 1 — пластида, 2 — ядерная мембрана, 3 — большие рибосомы, 4 — кинетохор, 5 — хромосома, 6 — эндоплазматический ретикулум, 7 — ундулиподия 9 + 2 (микротрубочки), 8 — кинетосома 9 + 0, 9 — клеточная мембрана, 10 — клеточная стенка, 11 — митохондрии.

Выделяют две главные таксономические единицы — надцарства: прокариоты и эукариоты.

Название «прокариоты» происходит от латинского слова pro (вперед, вместо) и греческого káryon (ядро) (рис. 5). Клетки прокариот не содержат ядра с мембраной, их кольцевая ДНК располагается в клетке свободно. Слабо выражено деление пространства клетки на отдельные части. Ограничено количество клеточных компонентов — органелл. Отсутствуют пластиды и митохондрии, отвечающие за энергетические превращения в более высокоорганизованных клетках. Клеточная стенка состоит из гетерополимерного вещества — муреина, которое не встречается у других групп организмов. Аппараты движения (жгутики) либо отсутствуют, либо относительно просто устроены. Наконец, размеры прокариотных клеток очень малы, в среднем единицы микрометров (мкм), что находится на грани разрешающей способности светового микроскопа.

Простота структуры у прокариот компенсируется высокой лабильностью и многообразием метаболических процессов. Способ питания может быть как автотрофным, так и гетеротрофным. Прокариоты питаются путем всасывания, или абсорбции, питательных веществ через клеточную стенку. Обычный тип размножения бесполый, простое деление пополам, однако обмен генетическим материалом иногда происходит при слиянии клеток за счет парасексуальных процессов.

Если прокариоты справедливо считаются первичными формами, возникшими в начале эволюционного пути, то развившиеся из них эукариоты представляют собой следующую ступень эволюции (см. рис. 5).

Клетки эукариот имеют выраженное ядро, окруженное мембраной. Генетический материал (ДНК) связан с белком в отдельных образованиях — хромосомах. Имеется целый набор органелл клетки: вакуоли, гранулы, нитевидные и палочковидные структуры. Энергетические процессы локализованы в митохондриях. Хорошо развита эндоплазматическая мембранная система, несущая множество пузырьков и цистерн. Мелкие нуклеопротеидные частицы — рибосомы, в которых производится синтез белков, либо связаны с мембранами эндоплазматической сети, либо взвешены в цитоплазме. Обычный тип размножения — через половой процесс с чередованием слияния ядра в зиготе и редукционного деления с образованием половых клеток — гамет. Возможны и неполовые способы размножения: простым делением, как у прокариот, почкованием, образованием спор и т. д., что наиболее часто встречается у микроорганизмов. Жгутики, или реснички, если они есть, имеют более сложное, чем у прокариот, строение. Питание эукариот может быть автотрофным и гетеротрофным: абсорбционным, как у прокариот, или голозойным, при котором пища заглатывается и перерабатывается внутри организма.

Размеры эукариотных клеток намного превышают размеры прокариотных, к примеру, митохондрии сопоставимы по величине с отдельными прокариотными клетками.

Подводя итог краткому описанию структуры и функции основной единицы живого — клетки, выделим «три кита» биологической организации: биохимическое единство, экономия материала и энергетическая эффективность.

5.2. Биологический взрыв и нехватка вещества

Одной из важных черт жизни является способность к рождению себе подобных, которые также могут размножаться, давая новые единицы, способные к размножению, и т. д. Это и есть известное явление автокатализа в физике, химии, при механических переносах: это — лавины, сели, реакции возгорания и взрыва (от простого пожара до атомного и термоядерного взрывов). Математически такому процессу соответствует уравнение экспоненты. Если размножение идет простым удвоением, типа бактериального деления пополам один родитель дает два потомка и т. д.), то формула для числа потомков Х имеет вид

Х = Х 0· 2 t/g = X 0· 2 n ,

где g — длительность одного поколения, т. е. время от рождения до следующего рождения; n — число поколений; Х 0 — начальное число размножающихся единиц (клеток, организмов).

Первое представление об экспоненте и ее стремительном росте во времени связывают со старинной восточной легендой о появлении шахмат. Правитель решил отблагодарить мудреца-изобретателя и предложил ему самому назначить награду, гарантируя исполнение. Мудрец попросил, казалось бы, немного: дать ему одно зернышко — на первый квадратик шахматной доски, два — на второй, четыре — на третий и т. д., удваивая каждый раз цифру (вплоть до 2 63, так как 2 0= 1 на первой клетке). Правитель был вначале поражен скромностью просьбы, а потом... оказалось, что она невыполнима. Чтобы заполнить все клетки доски, потребовалось бы по весу около 100 млрд т зерна, т. е. многократный мировой урожай!

В живой природе такая способность к быстрому возрастанию, автокаталитическому размножению была не только отмечена около тысячи лет назад, но уже и сформулирована в начало XIII в. (1202 г.) в виде математической модели итальянским математиком Леонардо Пизанским (он был родом из той самой Пизы, где находится знаменитая падающая, но до сих пор не упавшая башня). Этот Леонардо более известен под именем Фибоначчи. Рассуждая о числе потомков, появляющихся в последовательных поколениях, от единственной пары кроликов, Леонардо получил растущую последовательность чисел: 1; 1; 2; 3; 5; 8; 13; 21 и т.д., где каждое последующее число — сумма двух предыдущих (это и есть знаменитый ряд чисел Фибоначчи). Таким образом, численность популяции очень резко возрастает с числом поколений; так, если к десятому поколению общее число потомков приблизится к 100 особям, то уже к шестнадцатому будет свыше 1500 особей.

Великий классификатор и систематик живой природы К. Линней в середине XVIII в. вычислил, что «если бы однолетнее растение производило только пару семян („Нет ни одного растения, которое было бы так неплодовито“, — отмечает Ч. Дарвин, который приводит эти вычисления Линнея), его потомки на следующий год снова по паре семян и т.д., то в 20 лет было бы миллион растений» (цит. по: [Дарвин, 1912, с. 56]).

Сам Ч. Дарвин находился под глубоким впечатлением от высокой скорости размножения живых организмов в геометрической прогрессии. «...Все органические вещества естественно возрастают в такой прогрессии, что, если бы они не погибали, земля вскоре была бы покрыта потомством одной единственной пары... Даже медленно размножающийся человек удваивает численность в 25 лет, и по этой пропорции менее чем в тысячу лет буквально не осталось бы для его потомства места, где можно было бы поставить ногу» [Там же, с. 56].

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Николай Печуркин читать все книги автора по порядку

Николай Печуркин - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




Энергия и жизнь отзывы


Отзывы читателей о книге Энергия и жизнь, автор: Николай Печуркин. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x