Сергей Венецкий - Рассказы о металлах [4-е изд.]
- Название:Рассказы о металлах [4-е изд.]
- Автор:
- Жанр:
- Издательство:Металлургия
- Год:1985
- Город:Москва
- ISBN:нет данных
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Сергей Венецкий - Рассказы о металлах [4-е изд.] краткое содержание
Много веков металлы верно служат человеку, помогая ему строить и созидать, покорять стихию, овладевать тайнами природы, создавать замечательные машины и механизмы.
Богат и интересен мир металлов. Среди них встречаются старые друзья человека: медь, железо, свинец, золото, серебро, олово, ртуть. Эта дружба насчитывает уже тысячи лет. Но есть и такие металлы, знакомство с которыми состоялось лишь в последние десятилетия. О судьбах важнейших металлов, об их “планах на будущее” рассказывает эта книга.
Первое издание книги "Рассказы о металлах" (1970 г.) отмечено дипломом конкурса Московской организации Союза журналистов СССР на лучшую работу года по научной журналистике и дипломом ежегодного конкурса Всесоюзного общества "Знание" на лучшие произведения научно-популярной литературы. Четвертое издание книги переработано и дополнено новыми материалами.
Предназначена для самого широкого круга читателей: учащихся, студентов, преподавателей, специалистов — всех интересующихся историей и развитием металлургии, химии, материаловедения.
Венецкий С.И. Рассказы о металлах. — 4-е изд., перераб. и доп. — М.: Металлургия, 1985. — 240 с, ил.
Иллюстрации Алексея Владимировича Колли.
Рассказы о металлах [4-е изд.] - читать онлайн бесплатно полную версию (весь текст целиком)
Интервал:
Закладка:
Еще в 1908 году Розе и Бартран в США, а Фаруп в Норвегии предложили изготовлять белила не из соединений свинца или цинка, как делалось прежде, а из оксида титана. Такими белилами можно окрасить в несколько раз большую поверхность, чем тем же количеством свинцовых или цинковых белил. К тому же титановые белила не ядовиты (бич свинцовых белил), поскольку оксид титана безвреден для человеческого организма. Медицине известен случай, когда некий гражданин "принял" за один раз почти полкилограмма этого вещества без каких-либо печальных последствий.
Со временем оксид титана стали применять при окрашивании кож, тканей, в производстве стекла, фарфора, эмали, для изготовления искусственных бриллиантов.
Нашлась работа и для другого титанового соединения — уже упоминавшегося тетрахлорида титана, впервые полученного французским химиком Дюма еще в 1826 году. Способность этого соединения интенсивно образовывать маскирующие дымовые завесы широко использовалась в период первой мировой войны. В мирные же годы оно служит для окуривания растений во время весенних заморозков.

Но титан, как мы увидим далее, вправе был претендовать на более серьезную и интересную работу.
И вот, наконец, в 1925 году голландские ученые ван Аркель и де Бур разложением тетрахлорида титана на раскаленной вольфрамовой проволоке получили титан очень высокой чистоты. Вот тогда-то оказалось, что бытовавшее представление о хрупкости титана не выдерживает никакой критики, поскольку металл, полученный ван Аркелем и де Буром, обладал очень высокой пластичностью: его можно было ковать на холоде, как железо, прокатывать в листы, ленту, проволоку и даже тончайшую фольгу.
Теперь гордое имя, которое носил элемент, никому уже не казалось, как прежде, иронией судьбы — перед ним открылась широкая дорога в мир техники.
Словно в благодарность за освобождение из плена примесей титан начал изумлять ученых своими чудесными свойствами. Выяснилось, например, что титан, который почти вдвое легче железа, оказался прочнее многих сталей. По удельной прочности титан не имеет соперников среди промышленных металлов. Даже такой металл, как алюминий, уступил ряд позиций титану, который всего в полтора раза тяжелее алюминия, но зато в шесть раз прочнее. И что особенно важно, титан сохраняет свою прочность при высоких температурах (до 500 °C, а при добавке легирующих элементов — до 650 °C), в то время как прочность большинства алюминиевых сплавов резко падает уже при 300 °C.
Титан — очень твердый металл: он намного тверже алюминия, меди и даже железа. Чем выше предел текучести металла, тем увереннее детали из него сопротивляются эксплуатационным нагрузкам, тем дольше они сохраняют свои формы и размеры. Предел текучести титана в пять раз выше, чем у алюминия, и почти в три раза — чем у железа.
Неудивительно, что когда перед авиаконструкторами встал вопрос, какому металлу доверить преодоление звукового барьера, выбор пал на титан. Еще в 60-х годах в зарубежной печати появилось сообщение о создании в США сверхзвукового реактивного самолета "Черная птица", развивающего скорость более 3200 километров в час. Корпус этой машины был изготовлен из титана. С тех пор позиции титана в авиастроении заметно окрепли: из его сплавов изготовляют наружные части самолетов (мотогондолы, элероны, рули поворота) и многие другие узлы и детали — от двигателя до болтов и гаек. Благодаря титану самолеты становятся легче, а значит, возрастает их грузоподъемность. Так, только в результате замены стальных болтов двигателя титановыми в одном из типов истребителя масса двигателя снижается чуть ли не на сто килограммов. По прогнозам специалистов, в ближайшие годы доля конструкций из титана и его сплавов в самолетах, скорость которых в два-три раза выше скорости звука, возрастет до 60–90%
Не обойдется без этого металла и космическая техника. Отличные эксплуатационные качества демонстрируют, в частности, титановые баки для хранения жидкого кислорода и водорода: при сверхнизких температурах титан не разрушается, как большинство металлов, а наоборот, становится еще прочнее. По-видимому, титан будет основным конструкционным материалом объектов, монтируемых непосредственно в космосе. Как показали эксперименты, проведенные в 1969 году советскими космонавтами Георгием Шониным и Валерием Кубасовым, этот металл в условиях космического вакуума легко поддается сварке и резке.

С почтением относятся к титану конструкторы не только небесного оборудования. Инженеры ГДР, например, применили упрочняющее титановое покрытие для деталей ручных часов: тончайший слой титана — всего 0,2 микрона — в несколько раз повышает долговечность часового механизма, возрастает и точность хода. Для фоторепортеров, специализирующихся на съемках спортивных сюжетов, в Японии создан фотоаппарат, позволяющий делать снимки с выдержкой в 1/4000 секунды: это стало возможным благодаря титановому сплаву, из которого изготовлен шторный затвор камеры. Велосипедная рама из титана весит чуть больше килограмма, а весь велосипед — менее 7 килограммов. Эти легкие машины пользуются большим спросом у спортсменов. Гребцы экстракласса тоже охотно сменили старые лодки-скифы на новые — из углеволокна и титановых сплавов: такая "восьмерка" легче прежней на добрых 20 килограммов.
Титан привлек к себе внимание и химиков. На одном из заводов был проведен следующий эксперимент. Из чугуна, нержавеющей стали и титана изготовили три насоса для перекачки агрессивных жидкостей. Первый был "съеден" через трое суток, второй продержался десять дней, а третий (титановый) и через полгода непрерывной работы оставался цел и невредим.
Несмотря на то что титан еще довольно дорог, замена им более дешевых материалов во многих случаях оказывается экономически выгодной. Так, корпус реактора одного из химических аппаратов, изготовленный из титанового сплава, стоит в четыре раза дороже, чем такой же корпус из нержавеющей стали. Но при этом стальной реактор служит лишь шесть месяцев, а титановый десять лет. Прибавьте еще затраты на частую замену стальных реакторов, да потери, вызванные простоями оборудования, — и станет совершенно очевидно, что дорогой титан, как ни парадоксально это звучит, дешевле, чем дешевая сталь.
На выставке по применению титана в промышленности, организованной несколько лет назад в Лондоне, демонстрировался широкий ассортимент оборудования химических заводов, изготовленного из титана. Титановые сопла, проработав более двух месяцев в атмосфере горячих газов, содержащих диоксид серы, могли как ни в чем не бывало продолжать трудиться дальше; сопла из нержавеющей стали разрушались после нескольких часов работы. Успешно используют титан для изготовления деталей, работающих в атмосфере паров хлора, серной или азотной кислоты и других химических "агрессоров". Некоторые предприятия обзавелись даже громадными, высотой 120 метров, вентиляционными трубами из этого металла. Конечно, такая труба дороговата, но зато она простоит без ремонта добрую сотню лет — все затраты окупятся с лихвой.
Читать дальшеИнтервал:
Закладка: