Сергей Венецкий - Рассказы о металлах [4-е изд.]
- Название:Рассказы о металлах [4-е изд.]
- Автор:
- Жанр:
- Издательство:Металлургия
- Год:1985
- Город:Москва
- ISBN:нет данных
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Сергей Венецкий - Рассказы о металлах [4-е изд.] краткое содержание
Много веков металлы верно служат человеку, помогая ему строить и созидать, покорять стихию, овладевать тайнами природы, создавать замечательные машины и механизмы.
Богат и интересен мир металлов. Среди них встречаются старые друзья человека: медь, железо, свинец, золото, серебро, олово, ртуть. Эта дружба насчитывает уже тысячи лет. Но есть и такие металлы, знакомство с которыми состоялось лишь в последние десятилетия. О судьбах важнейших металлов, об их “планах на будущее” рассказывает эта книга.
Первое издание книги "Рассказы о металлах" (1970 г.) отмечено дипломом конкурса Московской организации Союза журналистов СССР на лучшую работу года по научной журналистике и дипломом ежегодного конкурса Всесоюзного общества "Знание" на лучшие произведения научно-популярной литературы. Четвертое издание книги переработано и дополнено новыми материалами.
Предназначена для самого широкого круга читателей: учащихся, студентов, преподавателей, специалистов — всех интересующихся историей и развитием металлургии, химии, материаловедения.
Венецкий С.И. Рассказы о металлах. — 4-е изд., перераб. и доп. — М.: Металлургия, 1985. — 240 с, ил.
Иллюстрации Алексея Владимировича Колли.
Рассказы о металлах [4-е изд.] - читать онлайн бесплатно полную версию (весь текст целиком)
Интервал:
Закладка:
Прекрасным материалом для каркасов зубных протезов оказался кобальтохромовый сплав, который намного прочнее золота (обычно используемого для этой цели) и, как легко догадаться, значительно дешевле

В медицине кобальт выступает и в другом амплуа: он является важным компонентом витамина В12, способствующего образованию в организме человека красных кровяных шариков. За создание этого эффективного средства в борьбе с малокровием английский химик и биохимик Дороти Кроуфут-Ходжкин в 1964 году удостоена Нобелевской премии.
Еще в древности славились на весь мир великолепные фарфоровые изделия различной окраски, изготовлявшиеся в Китае. Голубой цвет им придавали соединения кобальта. Этот элемент и в наши дни не расстается с фарфором — он входит в состав синих красителей. А грузинские специалисты по керамике сумели получить красивый черный фарфор, который обязан своим цветом вулканическому камню андезиту, взаимодействующему в процессе обжига с оксидом кобальта.
До сих пор мы рассказывали об обычном кобальте, но с тех пор, как в 1934 году известные французские ученые Фредерик и Ирен Жолио-Кюри открыли явление искусственной радиоактивности, наука и техника стали проявлять большой интерес к радиоактивным изотопам различных элементов, в том числе и кобальта. Из двенадцати радиоактивных изотопов этого металла наиболее широкое практическое применение получил кобальт-60.
Его лучи обладают высокой проникающей способностью. По мощности излучения 17 граммов радиоактивного кобальта эквивалентны 1 килограмму радия — самого мощного природного источника радиации. Вот почему при получении, хранении и транспортировке этого изотопа, как, впрочем, и других, тщательно соблюдают строжайшие правила техники безопасности, принимают все необходимые меры, чтобы надежно оградить людей от смертоносных лучей.
После того как в ядерном реакторе обычный металлический кобальт превращается в радиоактивный, его, подобно сказочному джинну, заточают в специальные массивные контейнеры, по виду напоминающие молочные бидоны. В этих контейнерах окруженный слоем свинца кобальт-60 переезжает на специальных машинах к месту будущей работы. Ну, а вдруг автомобиль попадет в аварию — контейнер-"бидон" может разбиться, и тогда упрятанная в нем ампула с кобальтом будет угрожать жизни людей? Нет, этого не произойдет. Разумеется, от дорожной аварии не застрахован ни один автомобиль, но даже, если она случится, "бидон" останется целым и невредимым. Ведь прежде, чем стать хранилищем для радиоактивного изотопа, контейнеры проходят серьезные испытания. Их бросают с пятиметровой высоты на бетонные плиты, помещают в термокамеры, подвергают различным испытаниям, и лишь после этого они обретают право принять в свое чрево маленькую ампулу с радиоактивным веществом. Все эти меры предосторожности делают работу людей, связанных с источниками ядерного излучения, практически безопасной.
У радиоактивного кобальта много профессий. Все более широкое применение в промышленности находит, например, гамма-дефектоскопия, т. е. контроль качества продукции путем просвечивания ее гамма-лучами, источником которых служит изотоп кобальт-60. Такой метод контроля позволяет с помощью сравнительно недорогой и компактной аппаратуры легко выявлять трещины, поры, свищи и другие внутренние дефекты массивных отливок, сварных швов, узлов и деталей, находящихся в труднодоступных местах. В связи с тем, что гамма-лучи распространяются источником равномерно во все стороны, метод дает возможность контролировать одновременно большое число объектов, а цилиндрические изделия проверять сразу по всему периметру.

С помощью гамма-лучей удалось разрешить давно интересовавший ученых-египтологов вопрос о маске фараона Тутанхамона. Одни утверждали, что она сделана из целого куска золота, другие считали, что ее собрали из отдельных частей. Решено было прибегнуть к помощи кобальтовой пушки — специального устройства, "заряженного" изотопом кобальта. Оказалось, маска действительно состоит из нескольких деталей, но настолько тщательно подогнанных одна к другой, что заметить линии стыка было совершенно невозможно.
Радиоактивный кобальт используют для контроля и регулирования уровня расплавленного металла в плавильных печах, уровня шихтовых материалов в домнах и бункерах, для поддержания уровня жидкой стали в кристаллизаторе установок непрерывной разливки.
Прибор, называемый гамма-толщиномером, быстро и с большой точностью определяет толщину обшивки судовых корпусов, стенок труб, паровых котлов и других изделий, когда к их внутренней поверхности невозможно подобраться и поэтому обычные приборы оказываются бессильны.
Для изучения технологических процессов и исследования условий службы различного оборудования широкое применение находят так называемые "меченые атомы", т. е. радиоактивные изотопы ряда элементов, в том числе и кобальта.
В Советском Союзе впервые в мировой практике создан промышленный радиационно-химический реактор, в котором источником гамма-лучей служит все тот же изотоп кобальта.
Наряду с другими современными методами воздействия на различные вещества — такими, как сверхвысокие давления и ультразвук, лазерное излучение и плазменная обработка, — радиационное облучение широко внедряется в промышленность, позволяя значительно улучшить свойства многих материалов. Так, автомобильные покрышки, подвергнутые радиационной вулканизации, служат на 10–15 % дольше обычных, а ткань для школьных костюмов, к нитям которой с помощью радиации "привили" молекулы полистирола, оказывается вдвое прочнее. Даже драгоценные камни после радиационных "процедур" становятся еще красивее: алмаз, например, под действием быстрых нейтронов обретает голубую окраску, медленные нейтроны делают его зеленым, а лучи кобальта-60 придают ему нежный голубовато-зеленый цвет.
Радиоактивный кобальт трудится и на сельскохозяйственной ниве, где его применяют для изучения влажности почв, определения запасов воды в снежном покрове, предпосевного облучения семян и других целей.
Интересное открытие сделали французские ученые. Они установили, что радиоактивный кобальт может с успехом служить… приманкой для молний. При небольшой добавке изотопа в стержень громоотвода воздух вокруг него в результате гамма-излучения ионизируется в значительных объемах. Грозовые разряды, возникающие в атмосфере, притягиваются, словно магнитом, к радиоактивному громоотводу. Эта новинка помогает "собирать" молнии в радиусе нескольких сот метров.
Читать дальшеИнтервал:
Закладка: