Михаил Левицкий - Карнавал молекул. Химия необычная и забавная
- Название:Карнавал молекул. Химия необычная и забавная
- Автор:
- Жанр:
- Издательство:Литагент Альпина
- Год:2019
- Город:Москва
- ISBN:978-5-0013-9101-2
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Михаил Левицкий - Карнавал молекул. Химия необычная и забавная краткое содержание
В книге рассказано о некоторых драматичных, а, порой, забавных поворотах судьбы как самих открытий, так и их авторов. Кроме того, читатель потренируется в решении занятных задач, что особенно приятно, когда рядом помещена подсказка, а потом и сам ответ.
В отличие от учебника в книге нет последовательного изложения основ химии, поэтому ее можно читать, начиная с любой главы.
Карнавал молекул. Химия необычная и забавная - читать онлайн бесплатно ознакомительный отрывок
Интервал:
Закладка:
Итак, пути вели в Ленинградский институт, при этом необходимо было доказать реальное происхождение образца с Корякского нагорья, а не с какого-то российского алюминиевого завода. Сотрудники Ленинградского института сообщили, что образец был найден и прислан в институт неким господином Крячко, который, вероятно, проживает на Чукотке, но его найти невозможно, поскольку фамилия, скорее всего, вымышленная: многие «копатели»-энтузиасты скрывают свои фамилии, особенно если находят россыпи драгметаллов. Ситуация казалась тупиковой, но через несколько месяцев случайно выяснилось, что в 1990-х гг. господин Крячко был соавтором работы, написанной с В. Дистлером, работающим в Москве. Через пару месяцев с Дистлером удалось связаться, и через переводчика он сообщил, что, во-первых, господин В. Крячко – реальный человек, а во-вторых, что самое главное, он продолжает работать с Дистлером, собирается к нему приехать буквально через неделю и Стейнхардт сможет с ним пообщаться. Крячко при встрече рассказал, что на Корякском нагорье в массе сине-зеленой глины искал платину, но нашел какой-то необычный блестящий камешек, совсем не похожий на платину, и отправил его в Ленинград для анализа. Он даже не знал, что обнаружил новый минерал хатыркит, образец которого после долгого путешествия оказался в музее Флоренции. В результате прояснилось самое главное – в районе Корякского нагорья нет никаких алюминиевых заводов (там и люди редки), т. е. это был минерал природного происхождения.
Казалось бы, история успешно завершилась, но в это время из лаборатории, изучавшей остатки хатыркита, поступили сведения, от которых у всей группы буквально перехватило дыхание. В малом фрагменте хатыркита была обнаружена крохотная частица диоксида кремния, внутри которого находился квазикристалл. Диоксид кремния – самый распространенный минерал на Земле, но дифрактограмма исследованного образца оказалась необычной – это была кристаллическая структура SiO 2, которая возникает при давлениях, превышающих атмосферное в сотни тысяч раз. Такое давление возможно в глубинных слоях Земли, но, вероятнее, при взрывных процессах в космосе. Окончательный ответ был получен при изотопном анализе образца, который осуществили в Калифорнийском технологическом институте. Анализ изотопов кислорода однозначно указал на то, что это внеземной минерал, причем не какой-то обыкновенный метеорит или астероид, а образец одного из старейших метеоритов, который появился не тысячу, не миллион, не 100 млн, а 4,5 млрд лет назад. Фактически он представляет собой один из первых минералов, возникших в Солнечной системе до появления Земли. В руках у ученых оказалось вещество, по возрасту сравнимое с Солнечной системой. Эти результаты произвели сильное впечатление на исследователей. Интересно, что своеобразный круг замкнулся: астрофизик Стейнхардт, изучая минералы, вновь вернулся к своей основной тематике – возникновению Вселенной.
Торжественность момента омрачила прозаическая проблема – флорентийский образец хатыркита был исчерпан до конца, было еще много нерешенных вопросов, а вещества для изучения не осталось. Возникла необходимость пополнить его запасы, следовательно, направить экспедицию в район Корякского нагорья. Очевидно, что ученых уже ничто не могло остановить. В июле 2011 г. на Чукотку отправилась экспедиция, состоявшая из пяти американцев (включая самого Стейнхардта), одного итальянца и шести русских. Естественно, В. Дистлер и В. Крячко, увлеченные необычной задачей, тоже вошли в состав экспедиции. В роли проводников были жители Чукотки. Участники экспедиции сумели найти то место, где В. Крячко в 1979 г. нашел минерал, и занялись раскопками. Они перелопатили около 1,5 т глины, большую часть выкапывали маленькими лопаточками, а кое-где и руками. Затем извлеченную породу необходимо было отмыть от глины в поисках интересных образцов, это делали в таких лотках, которые используют золотодобытчики. Примечательно, что эту работу вместе со всеми выполнял и авторитетный астрофизик-теоретик: желая узнать истину, ученый ни перед чем не остановится.
Исследования полученных образцов показали, что в них содержится искомый минерал, который участники экспедиции назвали икосаэдритом (кстати, Шехтман тоже обнаружил в структуре шехтманита икосаэдр). Тот факт, что авторы лично откопали все образцы, добавил убедительности исследованиям в глазах научного сообщества. Итак, предположение Стейнхардта, что квазикристаллы могут возникать в результате самопроизвольных природных процессов, подтвердилось.
Стейнхардт полагает, что квазикристаллический минерал икосаэдрит возник на заре существования Солнечной системы несколько миллиардов лет назад при столкновении метеоритов. Затем такой метеорит упал в бассейн реки Хатырки относительно недавно, приблизительно 10 000 лет назад, во время последнего ледникового периода – как раз тогда, когда по этому ручью спускались вниз с ледяными массами глинистые породы.
Согласитесь, что все рассказанное представляет собой сюжет приключенческого научно-популярного фильма.
Вернемся к синтетическим квазикристаллам. В настоящее время при лабораторных синтезах не придерживаются каких-либо точно установленных рекомендаций, чаще синтетики полагаются на интуицию. Сейчас такие соединения уже не редкость, получены сотни различных сплавов подобного типа.
Квазикристаллы указали новые направления исследований химикам, физикам, кристаллографам и материаловедам. Установлено, что они тверже обычных кристаллов, у них необычные оптические свойства, низкая теплопроводность, их электрическое сопротивление с ростом температуры падает, в то время как у обычных металлов растет. Квазикристаллы уже используют в авиационной и автомобильной промышленности в виде легирующих добавок. Низкое поверхностное трение некоторых квазикристаллических сплавов позволило найти им применение в быту. Появились фирмы, рекламирующие кухонную посуду с квазикристаллическим покрытием, которое обладает почти такими же антипригарными свойствами, как тефлон.
Квазикристаллы заставили ученых задуматься о некоторых проблемах более общего характера. Многоугольные конструкции с нечетным количеством углов, так удивившие кристаллографов, встречаются довольно часто в живом мире. Например, у планктонных организмов, разных иглокожих (морские звезды, морские ежи), у цветков многих плодовых деревьев и кустарников (яблони, груши, вишня, малина, рябина, калина), а также у некоторых полевых цветов (колокольчик, незабудка) (рис. 5.79).

Все это приводит к мысли, что, возможно, квазикристаллы представляют собой переходную форму от застывшего неорганического мира к живым структурам.
Читать дальшеИнтервал:
Закладка: