Аркадий Курамшин - Элементы: замечательный сон профессора Менделеева
- Название:Элементы: замечательный сон профессора Менделеева
- Автор:
- Жанр:
- Издательство:АСТ
- Год:2019
- ISBN:978-5-17-113353-5
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Аркадий Курамшин - Элементы: замечательный сон профессора Менделеева краткое содержание
Истории открытия, появления названия, самые интересные свойства и самые неожиданные области применения ста восемнадцати кирпичиков мироздания — от водорода, ключевого элемента нашей Вселенной, до сверхтяжёлых элементов, полученных в количестве нескольких атомов.
И тот, кто уже давно знает и любит химию, и тот, кто ещё только хочет сделать первые шаги в ней, найдут в книге что-то интересное и полезное для себя.
Элементы: замечательный сон профессора Менделеева - читать онлайн бесплатно ознакомительный отрывок
Интервал:
Закладка:
Берцелиус описал много химических и физических свойств тория, однако главная его характеристика — радиоактивность, избежала внимания шведского химика. Впрочем, это неудивительно, стеклянные фотопластинки, которые в 1896 году помогли Беккерелю обнаружить явление радиации, появились только в 1847 году, за год до смерти Берцелиуса. Сейчас даже при беглом взгляде на Периодическую систему ни у кого не возникает сомнения в радиоактивности тория — его соседство с такими известными радиоактивными элементами как радий, актиний, уран и плутоний позволяет предположить, что торий тоже будет радиоактивным, даже не зная правил стабильности атомных ядер.
Годы после открытия торий и его соединения лежали на лабораторных полках невостребованными, однако в какой-то момент соединения этого элемента стали использовать в газовых фонарях уличного освещения. Такую необычную профессию торий по той причине, что его оксид ThO 2оказался самым тугоплавким из всех оксидов и не плавился в факеле газовой горелки, а раскалялся добела и светил петербуржцам, лондонцам, парижанам и другим жителям столиц и крупных городов.
Значение газового освещения улиц сейчас забыто, но бесспорно это было не меньшее достижение, чем впоследствии изобретение электрических ламп — газовые лампы впервые в истории человечества позволили сделать так, что сначала крупные, а потом и другие улицы после заката не погружались во тьму (раньше, если кому-то нужно было выйти за ворота в темную время суток, ему приходилось брать с собой персональный источник света — факел или фонарь). Первоначально в калильных сетках газовых фонарей применялись и другие оксиды, но, помимо проблем с температурой плавления, они давали свет не очень высокого качества, и в 1891 году австрийский химик Ауэр фон Велсбах, испытав возможность применения в газовом фонаре оксидов магния, лантана и иттрия, остановился на оксиде тория.
Кто-то может подумать, что это было сомнительное инженерное решение — что-то типа отравленной туники Несса, и люди, жившие на освещенных ториевыми газовыми горелками улицах (а это были представители высшего и среднего класса) годами подвергались радиационному воздействию от распадающихся атомов тория и заболевали. К счастью, это было не так — торий распадается, испуская α-частицы (ядра атомов 4Не), пробег которых невелик, и которые могут быть легко остановлены стеклянным колпаком фонаря. Более того — оксид тория до сих пор применяется для изготовления горелок походных плиток, работающих от небольших газовых баллонов. Такие горелки абсолютно безопасны, если, конечно их не облизывать или не размалывать в порошок, а потом вдыхать его. Правда, если вам все-таки не по себе от перспективы находиться рядом с диоксидом тория, покупая туристическое снаряжение, обращайте внимание на маркировку « thorium free ».
Итак, оксид тория безопасен, если его не есть, однако какое-то время люди принимали его вовнутрь — оксид тория использовался как рентгеновский контраст торотраст для рентгеноскопии в 1930–40 годах — этому применению способствовала исключительная непрозрачность диоксида тория для рентгеновского излучения. Без сомнения, рентгенограммы, полученные с помощью диоксида тория, спасли немало жизней, а применение радиоактивного контраста рассматривалось как «приемлемый риск». К счастью, в конце 1940-х годов были разработаны менее опасные для здоровья контрасты для рентгеновской диагностики.
В наши дни торий применяется главным образом в энергетике. Содержание тория в земной в три раза больше содержания урана, при этом месторождения урана и месторождения тория далеко не всегда сопутствуют друг другу, и государства, обладающие запасами тория, не обязательно обладают запасами урана и наоборот. Самый распространённый в земной коре нуклид тория — 232Th не способен делиться тепловыми нейтронами и быть ядерным горючим. Однако при захвате теплового нейтрона 232Th превращается в 233U, который способен к делению подобно 233U и 239Pu и применяется в качестве топлива ректоров на быстрых нейтронах.
91. Протактиний
В 1871 году Дмитрий Иванович Менделеев среди ряда других сделал следующее предсказание: « Между торием и ураном можно ожидать элемента с атомной около 235. Формула высшего оксида этого элемента X 2O 5, как у ниобия с танталом, которым он должен быть аналогичен ».
Определенная в наше время атомная масса предсказанного элемента — протактиния близка к 231. Хотя предсказание массы можно посчитать относительно точным, оно всё-таки не сбылось — в предсказаниях атомной массы протактиния Менделеев не мог знать, что протактиний является членом одной из всего лишь четырёх пар «перевёртышей» — пар, в которых более тяжелый элемент располагается перед более лёгким (эти пары — аргон и калий; кобальт и никель; теллур и йод; торий и протактиний). Сейчас мы знаем, что существование таких пар объясняется тем, что периодичность изменения свойств элемента зависит не от массы, а от заряда ядра, но эта концепция была разработана Мозли и Бором уже после смерти Дмитрия Ивановича.
Другие же предсказания Менделеева про протактиний сбылись — свойства протактиния действительно воспроизводят свойства тантала — его высший и наиболее устойчивый оксид Pa 2O 5, хотя необходимо учесть, что протактиний демонстрирует горизонтальную аналогию свойств с торием и ураном, проявляя степень окисления +4, а вот горизонтальную аналогию свойств Дмитрий Иванович не принимал. Менделеев точно предсказал, что протактиний будет сопутствовать урану в руде ураните (также известной как урановая смолка).
Уран и торий были открыты в 1789 и 1828 годах соответственно, а вот открытия стоящего между ними протактиния пришлось ждать до XX века. Конечно тут, как и во многих других случаях нужно определиться, какой момент можно считать открытием элемента — осознание того, что руда содержит новый элемент, выделение соединения этого элемента из руды или получения нового элемента в виде простого вещества. В зависимости от того, что мы засчитаем за открытие, фактически для любого элемента можно назвать нескольких первооткрывателей. Для протактиния же ситуация еще сложнее.
В 1900 году английский химик и изобретатель Сэр Уильям Крукс выяснил, что в некоторых урановых рудах содержится новое радиоактивное вещество, которое он назвал уран-Х. Позднее оказалось, что уран-Х представляет собой два разных вещества, получившие название UX-1 и UX-2. Второе из них — UX-2 впервые было выделено польским химиком Казимиром Фаянсом в 1913 году. Это был короткоживущий нуклид 234Pa, период полураспада которого был чуть больше минуты. Из-за малого времени жизни Фаянс назвал открытый элемент бревием.
Читать дальшеИнтервал:
Закладка: