Коллектив авторов - Популярная библиотека химических элементов. Книга вторая. Серебро — нильсборий
- Название:Популярная библиотека химических элементов. Книга вторая. Серебро — нильсборий
- Автор:
- Жанр:
- Издательство:Наука
- Год:1983
- Город:М.
- ISBN:нет данных
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Коллектив авторов - Популярная библиотека химических элементов. Книга вторая. Серебро — нильсборий краткое содержание
Как неодинаковы свойства каждого из «кирпичей мироздания», так же неодинаковы их истории и судьбы. Одни элементы, такие, как медь, железо, сера, углерод, известны с доисторических времен. Возраст других измеряется только веками, несмотря на то, что ими, еще не открытыми, человечество пользовалось в незапамятные времена. Достаточно вспомнить о кислороде, открытом лишь в XVIII веке. Третьи открыты 100 — 200 лет назад, но лишь в паше время приобрели первостепенную важность. Это уран, алюминий, бор, литий
бериллий. У четвертых, таких, как, например, европий и скандий, рабочая биография только начинается. Пятые получены искусственно методами ядерно-физического синтеза: технеций, плутоний, менделевий, курчатовий… Словом, сколько элементов, столько индивидуальностей, столько историй, столько неповторимых сочетаний свойств.
В первую книгу вошли материалы о 46 первых, по порядку атомных номеров, элементах, во вторую
обо всех остальных
Популярная библиотека химических элементов. Книга вторая. Серебро — нильсборий - читать онлайн бесплатно полную версию (весь текст целиком)
Интервал:
Закладка:
Дальше предположений, однако, Резерфорд не пошел — вероятно потому, что был не химиком, а физиком…
Свидетельствует химик
Справедливости ради теперь следовало бы предоставить слово химику. Сделаем это. Статья «Эманация», воспроизведенная здесь с сокращениями, написана в 1910 г. (можно сказать по горячим следам) выдающимся русским химиком профессором Львом Александровичем Чугаевым.
«Если какую-либо соль радия растворить в воде или нагреть в пустоте, то из нее освобождается радиоактивный газ, получивший название эманации. Этот газ обладает удивительнейшими свойствами. С одной стороны, он абсолютно инертен: все попытки ввести его в соединение с другими телами окончились неудачей… Но, с другой стороны, эманация принадлежит к самым активным и изменчивым телам, какие только можно себе представить. Она быстро разрушается, выбрасывая из себя альфа-частицы и теряя при этом свои радиоактивные свойства. Процесс этот, подобно другим превращениям радиоактивных веществ, совершается согласно рассмотренному нами выше закону мономолекулярных реакций [15] Выше Чугаев так объясняет суть закона радиоактивных превращений: «Если активность препарата в начале опыта есть J , а по истечении времени t она обращается в J 1 , то lg J/J 1 = γt, где γ есть так называемая радиоактивная постоянная — величина, по своему значению вполне аналогичная константе скорости обыкновенной мономолекулярной реакции. Другими словами, это постоянная доля наличного количества радиоактивного вещества, которая превращается в единицу времени. Полагая J/J 1 = 2, мы получим lg2 = γt, t = 1/γ∙lg2. В этом случае величина t будет выражать так называемую половинную продолжительность жизни или полупериод существования данного радиоактивного продукта, т. е. время, в течение которого половина этого продукта подвергнется разрушению». С помощью несложных математических выкладок Чугаев подводил читателей того времени к пониманию физического смысла величины, которую мы теперь называем периодом полураспада, — одной из главных характеристик любого радиоактивного изотопа.
. Константа γ для эманации равна 0,000002, если в качестве единицы времени избрать секунду. Это значит, что в одну секунду из всего наличного количества эманации подвергается превращению 0,000002, или 1/ 500 000часть.
Отсюда легко вычислить, что половина эманации разрушается в течение около четырех (точнее 3,86) дней.
Около -65°C при атмосферном давлении эманации сгущается в жидкость, малейшая капелька которой ярко флуоресцирует голубым или фиолетовым светом, который сравнивают с электрическим. При -71°C она застывает в твердую непрозрачную массу. Для этих опытов Резерфорд имел в своем распоряжении 0,14 г радия (давшие 0, 082 мм 3эманации), Рамзай — 0,39 г кристаллического бромистого радия, что соответствует 0,21 г металлического радия. При столь ничтожных количествах эманации ее приходилось собирать и наблюдать в тончайших капиллярных трубочках (диаметром 0,1–0,2 мм) под микроскопом. Определяя скорость, с которой эманация вытекает через тонкие отверстия, можно было найти (приблизительно, конечно) ее плотность, а отсюда вес молекулы, который (в наиболее надежных опытах) оказался близким к 220.
За последнее время (напоминаем, что статья написана в 1910 г. — Ред.) Рамзай и Грей пришли почти к тому же результату путем прямого взвешивания определенного объема эманации, заключенного в капиллярную кварцевую трубочку. Любопытен по своей тонкости экспериментальный прием, избранный ими для этой цели. Для взвешивания служили особые микровесы, целиком изготовленные из кварца. Чувствительность их достигала 1/ 500 000мг, а наибольшее количество взвешиваемой эманации занимало объем не более 0,1 мм 3. Самое взвешивание происходило без помощи разновесок. Взвешиваемое тело (кварцевый капилляр, содержащий эманацию) уравновешивалось одним и тем же полым кварцевым шариком, в котором было заключено некоторое количество воздуха. Вес этого шарика (кажущийся) менялся в зависимости от давления воздуха в приборе… Плотность эманации в среднем из ряда опытов была найдена равной 111,5, что соответствует молекулярному весу 223. Принимая во внимание, что эманация по своим свойствам должна быть причислена к индифферентным (в оригинале — «идеальным»; видимо, опечатка. — Ред.) газам нулевой группы, молекула которых всегда состоит из одного только атома, заключаем, что и атомный вес ее должен быть близок 223… И так как ныне уже нельзя сомневаться в ее элементарной природе, то Рамзай и предложил для нее особое название — нитон.
Процесс образования нитона из радия сопровождается выделением альфа-частиц, которые, как мы сейчас увидим, представляют из себя атомы гелия, заряженные положительным электричеством. Поэтому Резерфорд и Содди предположили, что первая фаза превращения радия выражается такой схемой: Ra = эманация + гелий (или Ra = Nt + He), т. е. 226,4–4=222,4. На этом основании атомный вес нитона должен быть близок к 222,4.
Принимая во внимание трудность соответствующих экспериментальных определений, нельзя не признать совпадение прямо блестящим».
Что к этому следовало бы добавить?
Прежде всего, что за годы, прошедшие со дня открытия радона, его основные константы почти не уточнялись и не пересматривались. Это свидетельство высокого экспериментального мастерства тех, кто определил их впервые. Лишь температуру кипения (или перехода в жидкое состояние из газообразного) уточнили. В современных справочниках она указана вполне определенно — минус 62°C.
Еще надо добавить, что ушло в прошлое представление об абсолютной химической инертности радона, как, впрочем, и других тяжелых благородных газов. Еще до войны член-корреспондент Академии наук СССР Б.А. Никитин в ленинградском Радиевом институте получил и исследовал первые комплексные соединения радона — с водой, фенолом и некоторыми другими веществами. Уже из формул этих соединений: Rn∙6H 2O, Rn ∙C 6H 5OH, Rn∙CH 3C 6H 5— видно, что это так называемые соединения включения, что радон в них связан с молекулами воды или органического вещества лишь силами Ван-дер-Ваальса… Позже, в 60-х годах, были получены и истинные соединения радона. По сложившимся к этому времени теоретическим представлениям о галогенидах благородных газов, достаточной химической стойкостью должны обладать соединения радона RnF 2, RnF 4, RnCl 4и некоторые другие. Согласно тем же теоретическим представлениям, истинные химические соединения радона должны получаться легче, чем аналогичные соединения других благородных газов.
Фториды радона были получены сразу же после первых фторидов ксенона, однако точно идентифицировать их не удалось. Скорее всего, полученное малолетучее вещество представляет собой смесь фторидов радона. В отличие от довольно летучих фторидов ксенона, это вещество не возгоняется до температуры 250°C. Водород восстанавливает его при 500°C.
Читать дальшеИнтервал:
Закладка: