Лев Власов - Занимательно о химии
- Название:Занимательно о химии
- Автор:
- Жанр:
- Издательство:Молодая гвардия
- Год:1968
- Город:Москва
- ISBN:нет данных
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Лев Власов - Занимательно о химии краткое содержание
Авторы этой книги попытались рассказать о наиболее важных и интересных химических проблемах.
Читатель из этой книги узнает, как устроена периодическая система и почему она так называется; как получают сложнейшие вещества и как работают с единичными атомами химических элементов.
Занимательно о химии - читать онлайн бесплатно полную версию (весь текст целиком)
Интервал:
Закладка:
Действительно, интересно: в камне, поднятом на берегу реки, мы находим кремний и алюминий, калий и цинк, серебро и уран — чуть ли не всю периодическую систему Менделеева. Конечно, большинство элементов будет содержаться в количестве считанных атомов — любопытен сам факт.
Наивно было бы думать, что в найденном камне все элементы входят в состав какого-то одного соединения. Отнюдь нет! Мы имеем дело со сложной смесью сложных химических веществ. Главную роль в них играют кремний, алюминий и кислород. Остальных же элементов меньше, а многие вообще составляют ничтожную примесь.
Так в природе. А в химической лаборатории? Могут ли ученые приготовить соединение, в молекулу которого входили бы все элементы менделеевской таблицы?
Химикам приходилось получать очень сложные вещества, состоящие более чем из десятка элементов. Но немногим более. И никто пока еще не ставил себе задачу создать такую молекулярную постройку, где химическими узами связались бы все обитатели Большого дома. Не только потому, что руки не дошли, да и для практики это малоинтересно. Соорудить такую молекулу-монстра чрезвычайно трудно.
Трудно, но, по-видимому, возможно.
Редкое химическое соединение удается получить в один прием, провести реакцию в одну стадию. Если бы мы задались целью построить молекулу, объемлющую все химические элементы, потребовались бы многие десятки, а то и сотни стадий. Столь сложное «здание» можно воздвигнуть только по частям.
Мы не беремся изобразить на бумаге формулу даже простейшего варианта гипотетического «всеэлементного» соединения. Просто потому, что никто еще не продумал путей его создания.
Когда нет проекта, нет чертежей сооружения, его невозможно представить себе отчетливо. Можно только фантазировать.
Вот символ этого удивительного атома — Ps. Но не пытайтесь отыскать его в менделеевской таблице. Потому что это вовсе не атом какого-либо химического элемента.
И живет он ничтожное мгновение — меньше одной десятимиллионной доли секунды. Однако про него нельзя сказать, что он радиоактивен.
Ps расшифровывается как позитроний. Его устройство чрезвычайно просто.
Возьмите атом водорода, наипростейший атом химического элемента. Один электрон вращается вокруг одного-единственного протона.
Атом позитрония возникает при определенных видах радиоактивных превращений, которые сопровождаются испусканием позитрона. На какое-то, очень короткое, время позитрон с электроном образуют устойчивую систему.
В позитронии роль протона исполняет элементарная частица позитрон. Это антипод электрона. У позитрона такие же размеры, та же масса, и отличается он лишь тем, что имеет противоположный (положительный) заряд.
Если позитрон и электрон сталкиваются, то им обоим приходит конец. Они, как говорят физики, аннигилируют. Иными словами: превращаются в ничто. А если быть более точными — в излучение.
Но перед тем как исчезнуть, два непримиримых врага короткое мгновение существуют рядом друг с другом. Тогда и рождается атом-призрак позитроний. Атом без ядра, так как электрон и позитрон вращаются вокруг общего центра тяжести.
Кому интересен позитроний? Ну, казалось бы, только физикам-теоретикам; может, еще писателям-фантастам, которые ищут новые типы горючего для своих звездолетов.
Но вот недавно в США вышла в свет толстенная книжка под названием «Химия позитрония». Это никакой не фантастический роман. Книга написана серьезными учеными и толкует о том, как исследователи используют необычный атом для своих нужд.
Во время своей короткой жизни позитроний способен вступить в химическую реакцию. Особенно легко он реагирует с химическими соединениями, у которых сохранились свободные валентности. Эти неиспользованные вакансии и занимают атомы позитрония.
С помощью специальных приборов химики прослеживают характер распада позитрония, забравшегося в молекулу вещества. Оказывается, в зависимости от строения молекулы он распадается по-разному. Это позволяет химикам исследовать тонкие детали молекулярных конструкций, решать многие сложные и спорные вопросы, где другие методы бессильны.
В нашем химическом музее алмаз все-таки не самый главный экспонат. Для уникума он слишком бесхитростен. Его своеобразный углеродный скелет ныне никого не удивляет. Еще в семнадцатом столетии химики совершенно элементарно сожгли алмазный кристалл с помощью солнечных лучей и обыкновеннейшей лупы…
Химики давно размышляли о другом. Нельзя ли графит превратить в алмаз? Ведь и тот и другой — это углерод. Дело оставалось за малым: найти возможность графитовый углеродный каркас перестроить в алмазный, из очень мягкого материала приготовить очень твердый. Ничего не отнимая и ничего не добавляя.

В конце концов такую возможность нашли. Это весьма занятная история, и в свое время мы о ней поведаем. Пока же отметим: чтобы изготовить искусственный алмаз, понадобились гигантские давления.
Потому в качестве героя настоящего очерка мы выбираем давление. Да не какое-нибудь обычное — в одну, две, десять атмосфер, а давление сверхвысокое. Когда на квадратный сантиметр поверхности давят силы в десятки и сотни тысяч килограммов.
Итак, сверхвысокие давления позволяют получать вещества, ранее невиданные.
Скажем, во времена алхимиков известны были две разновидности фосфора — белый и красный. Теперь к ним добавилась третья — черный фосфор. Самый тяжелый, самый плотный, он проводит электрический ток ничуть не хуже многих металлов. Фосфор, типичный неметалл, превратился под влиянием сверхвысоких давлений в почти что металлическое вещество. И притом устойчивое.
Примеру фосфора последовал мышьяк, потом некоторые другие неметаллы. И каждый раз ученые отмечали разительные перемены в свойствах. Тяжелая рука сверхвысокого давления меняла эти свойства прямо на глазах. С точки зрения физики ничего необычного здесь не происходило. Попросту сверхвысокое давление перекраивает кристаллическую структуру элементов и их соединений. Делает их более металличными.
Так родился сугубо физический термин: «металлизация давлением».
…Придет время, и космонавты вступят на поверхность Луны, Марса, Венеры. Затем придет очередь иных, более далеких и еще более загадочных миров. Люди много раз будут сталкиваться с необычным, неожиданным, неведомым.
Но нас сейчас интересует лишь одна частность.
Всюду ли химические элементы одинаковы? Простирается ли могущество периодического закона и таблицы Менделеева на все без исключения космические тела? Или же гениальное творение русского ученого действует только в ограниченных, земных рамках?
Читать дальшеИнтервал:
Закладка: