Илья Леенсон - Удивительная химия

Тут можно читать онлайн Илья Леенсон - Удивительная химия - бесплатно ознакомительный отрывок. Жанр: sci-chem, издательство М. : ЭНАС, 2009. - 176 с, год 2009. Здесь Вы можете читать ознакомительный отрывок из книги онлайн без регистрации и SMS на сайте лучшей интернет библиотеки ЛибКинг или прочесть краткое содержание (суть), предисловие и аннотацию. Так же сможете купить и скачать торрент в электронном формате fb2, найти и слушать аудиокнигу на русском языке или узнать сколько частей в серии и всего страниц в публикации. Читателям доступно смотреть обложку, картинки, описание и отзывы (комментарии) о произведении.
  • Название:
    Удивительная химия
  • Автор:
  • Жанр:
  • Издательство:
    М. : ЭНАС, 2009. - 176 с
  • Год:
    2009
  • ISBN:
    978-5-93196-925-1
  • Рейтинг:
    3.5/5. Голосов: 101
  • Избранное:
    Добавить в избранное
  • Отзывы:
  • Ваша оценка:
    • 80
    • 1
    • 2
    • 3
    • 4
    • 5

Илья Леенсон - Удивительная химия краткое содержание

Удивительная химия - описание и краткое содержание, автор Илья Леенсон, читайте бесплатно онлайн на сайте электронной библиотеки LibKing.Ru


В увлекательной форме изложены оставшиеся за рамками школьных учебников сведения о химической науке, величайших открытиях ученых-химиков, загадочных фактах и уникальных химических экспериментах.

Для школьников, студентов и учителей, а также для всех, кто желает открыть для себя незнакомую, полную тайн и парадоксов химию.


Удивительная химия - читать онлайн бесплатно ознакомительный отрывок

Удивительная химия - читать книгу онлайн бесплатно (ознакомительный отрывок), автор Илья Леенсон
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Больших успехов в изготовлении термометров достигли мастера-стеклодувы из итальянского города Флоренции, где в 1657 году князь Леопольдо Медичи основал Академию опытов. Главное усовершенствование состояло в том, что из шара и трубки удаляли воздух, после чего конец трубки герметизировали сургучом. Так впервые удалось полностью избавиться от влияния атмосферного давления, а заодно устранить испарение жидкости из трубочки. Приборы флорентийских мастеров были настоящими произведениями искусства (рис. 2.14). Их изготовление описано в трудах Академии, изданных в 1667 году: «Прежде всего стеклодув должен изготовить шарик соответствующей величины с припаянной к нему трубкой. Наполнение инструмента жидкостью происходит следующим образом: шарик нагревают и затем сразу погружают открытый конец трубки в спирт. Спирт начинает медленно подниматься по трубке. При помощи воронки с вытянутым тонким носиком спирт доливают в шар. Трубка заранее делится на равные части, причем деления отмечаются белыми бусинами. Затем почти готовый термометр нагревают и, наконец, герметически закрывают его, как только спирт достигнет высшей точки».

Рис 214 Изображения термометров в трудах итальянской Академии опытов 1666 - фото 23
Рис. 2.14. Изображения термометров в трудах итальянской Академии опытов (1666)

Обычно бусинами из белой эмали, которые впаивали в разогретую трубку, делили шкалу на 10 равных частей. Затем каждый промежуток делили еще на 10 равных частей с помощью девяти бусин из черной или цветной эмали. На длинной спиральной трубке термометра помещали много делений и наблюдали малые изменения температуры. С помощью таких термометров флорентийские академики сделали несколько открытий. Они, например, установили, что показание термометра не меняется, когда его шарик погружен в толченый лед, даже если сосуд со льдом помещен в кипящую воду. Ученые не знали, как объяснить это явление и не догадывались, что оно наблюдается при плавлении любого вещества. Сейчас любой школьник знает, что температура смеси воды со льдом будет постоянной (0 °C). пока весь лед не растает.

А теперь посмотрите на современный термометр — трубочка, по которой поднимается ртуть или спирт, очень узкая, особенно у медицинского термометра. Такие трубочки называются капиллярами (от латинского слова capillus — «волос»). Действительно, некоторые термометры имеют капилляры диаметром несколько сотых долей миллиметра — тоньше человеческого волоса! Эти термометры такие чувствительные, что легко улавливают изменение температуры даже в тысячные доли градуса.

Если положить рядом термометры, изготовленные в разное время в разных странах, они могут показать совершенно разные температуры. Например, на одном будет 40°, на другом — 50°, на третьем — 122°! Вы, наверное, уже догадались, что это разные градусы.

Рис 215 Термометр изготовленный в XIX веке позволял определять в - фото 24
Рис. 2.15. Термометр, изготовленный в XIX веке, позволял определять, в соответствии с привычкой владельца, температуру по Цельсию или Реомюру, а также переходить от одной шкалы к другой

Действительно, когда-то во Франции и в России были распространены термометры со шкалой Реомюра, которая была предложена в 1730 году французским ученым Рене Антуаном Реомюром (1683–1757). В этом термометре шкала между точками замерзания и кипения воды разделена на 80 частей (рис. 2.15).

В США распространена шкала Фаренгейта, предложенная в 1714 году работавшим в Голландии искусным немецким физиком и стеклодувом Даниэлем Габриэлем Фаренгейтом (1686–1736), который первым начал изготовлять точные термометры. У нас шкала Фаренгейта известна в основном благодаря знаменитому фантастическому рассказу Рея Брэдбери «451° по Фаренгейту». Формула, связывающая шкалу Фаренгейта (F) со шкалой Цельсия, выглядит очень странно: t °F = 9/5(1 °C) + 32. Откуда она взялась?

Для калибровки своих термометров Фаренгейт использовал две точки: очень низкую температуру, которую дает смесь мелко колотого льда с солью и которая была принята за нулевую, а также «нормальную» температуру тела человека. Этот интервал он разделил на 12 частей; это число удобно тем, что оно делится и на 3, и на 4, и на 6. Первоначальные градусы получились у Фаренгейта слишком крупными (каждый градус соответствовал примерно 5 °C). Поэтому со временем Фаренгейт изменил шкалу: интервал между температурами охлаждающей смеси из льда с солью и плавления льда он последовательно пять раз разделил пополам и таким образом получил для плавления льда отметку на 32° выше нулевой (вот откуда в формуле для пересчета градусов Цельсия в градусы Фаренгейта появилось число 2 5= 32). По шкале Фаренгейта нормальная температура тела человека равна 98°, а температура кипения воды — 212°. Теперь становится понятным и другое число в формуле для перехода от шкалы Цельсия в шкалу Фаренгейта — это сотая часть интервала между точками кипения воды и плавления льда: (212 — 32)/100 = 9/5. А в рассказе Брэдбери 451 °F — 233 С — это температура, при которой воспламеняется бумага (при чуть более высокой температуре — 236 °C — возгорается сосновая древесина). В научной литературе американцы давно перешли на привычную нам стоградусную шкалу. Что же до обывателей, то их мнение образно выразил один фермер, который на вопрос, чем ему не нравится шкала Цельсия, ответил: «Я никогда не поверю, что 40 градусов — это очень жарко. Когда же утром по радио передают, что сейчас в округе плюс десять градусов, то я твердо знаю, что мне надо одеться потеплее, взять лопату и идти отгребать снег от гаража…»

А теперь приступим к интересному эксперименту с медицинским термометром. Но прежде следует сказать о его потенциальной опасности. Медицинский термометр знаком каждому с детства и обычно вызывает лишь неприятные ассоциации: ведь как правило мы измеряем температуру только во время недомогания или болезни. У химика же термометр вызывает в основном опасения тем, что содержит ядовитый металл — ртуть. Если термометр разбить и не собрать тщательно всю разлившуюся ртуть (а это очень трудно сделать!), то мельчайшие шарики ртути, закатившиеся в труднодоступные места, будут медленно испаряться, а ее пары, попадая в легкие, задерживаются там и вызывают впоследствии отравление организма. Кстати, по той же причине опасность представляют и лампы дневного света, содержащие ртуть. Некоторым «противоядием» от остатков пролитой ртути может служить регулярное и частое проветривание помещения, снижающее концентрацию паров ртути в воздухе.

Но разве ртуть при комнатной температуре испаряется? Ведь температура кипения ее очень высока — 357 °C. Тем не менее в полностью изолированном помещении, в котором пролита ртуть, в каждом кубическом сантиметре воздуха содержится 30 триллионов атомов ртути, или 13,4 мг/м 3, что в 1300 раз больше предельно допустимой концентрации! И вот что еще плохо: поскольку силы притяжения между атомами ртути малы (именно поэтому этот металл жидкий), испаряется ртуть довольно быстро, хотя на первый взгляд кажется, что пролитые капли ртути в течение длительного времени вовсе не уменьшаются 56 в размере. А отсутствие цвета и запаха у паров ртути приводит к тому, что без специальных приборов обнаружить их в воздухе невозможно.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать


Илья Леенсон читать все книги автора по порядку

Илья Леенсон - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки LibKing.




Удивительная химия отзывы


Отзывы читателей о книге Удивительная химия, автор: Илья Леенсон. Читайте комментарии и мнения людей о произведении.


Понравилась книга? Поделитесь впечатлениями - оставьте Ваш отзыв или расскажите друзьям

Напишите свой комментарий
x