Лев Мухин - Мир астрономии
- Название:Мир астрономии
- Автор:
- Жанр:
- Издательство:Молодая гвардия
- Год:1987
- Город:Москва
- ISBN:нет данных
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Лев Мухин - Мир астрономии краткое содержание
Мир астрономии - читать онлайн бесплатно полную версию (весь текст целиком)
Интервал:
Закладка:
В центре такой звезды находится конвективное ядро, радиус которого занимает примерно 0,2 от полного радиуса звезды. Причина появления конвективного ядра очевидна: лучистый перенос уже не справляется с откачкой энергии из центральных районов звезды, и поэтому должен включиться механизм конвекции. В центре звезды температура около 27 миллионов градусов, а плотность в 26 раз больше средней. В звезде 90 процентов водорода, 9 — гелия и 1 процент остальных элементов. Согласитесь, что такая звезда устроена достаточно просто, основной источник ее энергии С – N – О-цикл.
Посмотрим теперь, что представляют собой звезды, расположенные на нижней части главной последовательности. Они, разумеется, сильно отличаются от случая, который мы только что рассмотрели. Во-первых, у этих звезд (и в том числе у нашего Солнца) нет конвективного ядра, во-вторых, основной источник энергии — протон-протонный цикл. И наконец, в этих звездах есть внешняя конвективная зона, в которой содержится примерно 10 процентов всей массы звезды, если масса этой звезды составляет 60 процентов от массы Солнца. Конвективная зона образуется из-за повышенной непрозрачности слоя, начинающегося на расстоянии 0,65 от полного радиуса звезды и продолжается почти до поверхности.

Яркая звезда в Трапеции.
В центре звезды плотность выше средней в 20 раз, а температура, естественно, ниже, чем у более массивной звезды, — всего 8,9 миллиона градусов. Химические элементы в этой модели равномерно распределены по всей звезде.
При построении моделей Солнца была учтена неравномерность распределения водорода по радиусу, и тогда получилось, что температура в центре Солнца составляет 14,6 миллиона градусов, а плотность — 134 г/см 3.
Итак, все наши модели заметно отличаются друг от друга. Каждая звезда имеет свою структуру — например ядро, или внешнюю конвективную зону. И выражение Эддингтона: «Нет ничего проще, чем звезда», — кажется уже не столь очевидным. А ведь мы пока рассмотрели лишь самые простые модели звезд. Сложности дальше будут расти, как снежный ком.
Рассмотрим, к примеру, модель звезды-гиганта, радиус которой в 21 раз больше радиуса Солнца. Пусть масса гиганта равна 1,3 массы Солнца, а светимость больше в 226 раз. При расчетах структуры такой звезды выяснилась удивительная вещь.
В центре звезды водорода нет, он весь выгорел. Там находится маленькое ядро, состоящее почти целиком из гелия. Радиус его — всего лишь одна тысячная полного радиуса звезды. Поскольку водорода там уже нет, термоядерные реакции в ядре не идут, а температура ядра (40 миллионов градусов) постоянна. Поэтому ядро называется изотермическим. Однако даже 40 миллионов градусов недостаточны, чтобы «зажечь» тройной α-процесс, и источников энергии в ядре нет.
Вокруг ядра расположена тонкая оболочка, в которой идут реакции С – N – О-цикла. Толщина оболочки — чуть меньше радиуса ядра. Далее идет слой, в котором энергия переносится излучением. Толщина его составляет примерно одну пятую радиуса звезды. А далее идут наружные слои гиганта, охваченные бурной конвекцией. Они содержат около 70 процентов массы всей звезды.
Но тогда мы приходим к удивительному выводу. Небольшое ядро гиганта весит почти одну третью его часть. И его плотность составляет 3,5 · 10 5 г/см 3. Другими словами, чайная ложка вещества ядра весит около тонны. Возникает резонный вопрос. Неужели вещество ядра красного гиганта тоже можно считать газом?
Ответ на поставленный вопрос однозначен: «Да». Но газ этот особенный, и, чтобы объяснить все его свойства, мы должны будем поговорить о том, как устроены белые карлики — широко распространенный тип звезд в нашей Галактике. Каковы их основные свойства?
Светимость их очень мала: иногда в тысячи раз меньше солнечной. В то же время масса их примерно равна массе Солнца. Но при солнечной массе эти звезды имеют размеры, сравнимые с размерами планеты.
Сразу же возникает вопрос о температуре внутри такой звезды. Если мы попробуем оценить ее по формуле T = 14(M · R )/(M
· R) миллионов градусов, то получим совершенно несуразный и противоречивый результат. Температура получится равной сотням миллионов градусов. Это, в свою очередь, означает что должны идти высокотемпературные реакции, в частности, тройной α-процесс. Крохотные звезды должны выделять огромное количество энергии и светить, как маяки на ночном небе. Но на самом деле их светимость очень мала. В чем здесь дело?
До сих пор во всех «звездных» оценках мы пользовались лишь законом Клайперона и законом всемирного тяготения. Последний исключений не знает. Тогда остается сделать вывод о том, что вещество белого карлика не идеальный газ, и закон Клайперона здесь не работает. Но что же это такое? Быть может, вещество белых карликов жидкость или твердое тело?
Нет. Плотность жидкости или твердого тела не может превышать 20 г/см 3. При этой плотности атомы вещества уже предельно тесно расположены друг к другу. Расстояние между ними порядка 10 –8сантиметра. Но плотность белого карлика больше тонны в кубическом сантиметре. Это означает, что внутри белого карлика нет атомов! Там есть очень плотный ионизированный газ, состоящий из ядер атомов и отдельных электронов.
Итак, вещество белого карлика — газ, но газ чудовищной плотности. Поведение его никак нельзя описать в рамках законов школьной физики. Здесь уже нужна квантовая механика. Она, и только она, в состоянии объяснить свойства белых карликов.
Великий физик Паули знаменит не только тем, что он предсказал существование нейтрино. Он также ввел в квантовую механику основополагающий принцип, названный его именем — принцип Паули, который запрещает находиться на одной и той же квантовой орбите в атоме более чем двум электронам. Принцип этот универсален, его смело можно назвать законом природы, исключений он не знает.
Но при чем здесь атомы? Ведь спрессованное до немыслимых плотностей вещество белого карлика не содержит атомов. Там есть лишь ядра атомов и электроны. Оказывается, что электронный газ в белом карлике является чисто квантовой системой, и, говоря другими словами, словами квантовой механики, каждый электрон в газе может занимать строго определенное состояние. Но число состояний ограничено, конечно. Более того, число электронов в каком-либо объеме белого карлика больше числа разрешенных состояний.
Тогда, поскольку принцип Паули нарушать нельзя, электроны, находящиеся в одном и том же объеме, должны отличаться друг от друга, должны обладать различными скоростями. Чем больше электронов в одном состоянии, тем больше отличаются их скорости. Электронов много, и все они движутся с разными скоростями в силу принципа Паули. В обычном газе изменение температуры влияет на скорости частиц. В нашем же, электронном газе, где работает принцип Паули, нагревание или охлаждение практически не повлияет на скорости электронов.
Читать дальшеИнтервал:
Закладка: