Брайан Грин - Элегантная вселенная (суперструны, скрытые размерности и поиски окончательной теории)
- Название:Элегантная вселенная (суперструны, скрытые размерности и поиски окончательной теории)
- Автор:
- Жанр:
- Издательство:Vintage Books
- Год:1999
- Город:New York
- ISBN:5-354-00161-7
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Брайан Грин - Элегантная вселенная (суперструны, скрытые размерности и поиски окончательной теории) краткое содержание
Элегантная вселенная (суперструны, скрытые размерности и поиски окончательной теории) - читать онлайн бесплатно ознакомительный отрывок
Интервал:
Закладка:
Годы исследований, отсчет которых идет с первой статьи Калуцы, показали, что хотя размеры всех дополнительных измерений, предлагаемых физиками, должны быть слишком малы, чтобы мы могли наблюдать их непосредственно или с помощью имеющегося оборудования, эти измерения оказывают важное косвенное влияние на наблюдаемые физические явления. В теории струн эта связь между свойствами пространства на микроскопическом уровне и наблюдаемыми физическими явлениями видна особенно отчетливо.
Чтобы понять это, вспомним, что массы и заряды частиц определяются возможными модами резонансных колебаний струн. Представьте себе крошечную струну, которая движется и колеблется, и вы поймете, что моды резонансных колебаний подвержены влиянию со стороны окружающего пространства. Подумайте, например, о морских волнах. На бескрайних просторах океана отдельная изолированная волна может иметь любую форму и двигаться в любом направлении. Это очень похоже на колебания струны, движущейся по развернутым протяженным пространственным измерениям. Как указывалось в главе 6, такая струна в любой момент времени может колебаться в любом из протяженных измерений. Но когда морская волна проходит через более узкий участок, на форму волны будут влиять, например, глубина моря, расположение и форма скал, форма канала, по которому движется вода и т. п. Можно также представить себе органную трубу или валторну. Звук, который может воспроизводить каждый из этих инструментов, непосредственно зависит от резонансной моды колебаний воздуха, проходящего через них, а эта мода определяется формой и размерами каналов в инструменте, через которые движется поток воздуха. Свернутые пространственные измерения оказывают аналогичное влияние на возможные моды резонансных колебаний струны. Поскольку крошечные струны колеблются во всех пространственных измерениях, форма, в которую свернуты эти дополнительные пространственные измерения, а также форма их взаимного переплетения, сильно влияют и строго ограничивают возможные моды резонансных колебаний. Эти моды, в значительной степени определяемые геометрией дополнительных измерений, формируют набор свойств возможных частиц, наблюдаемых в привычных протяженных измерениях. Это означает, что геометрия дополнительных измерений определяет фундаментальные физические свойства, такие как массы частиц и заряды, которые мы наблюдаем в нашем обычном трехмерном пространстве.
Это столь глубокий и важный момент, что мы повторим его еще раз. Согласно теории струн Вселенная состоит из крошечных струн. Моды резонансных колебаний этих струн определяют, на уровне микромира, массы и константы взаимодействия элементарных частиц. Теория струн также требует существования дополнительных измерений, которые должны быть свернуты до очень маленького размера, чтобы не было противоречия с тем фактом, что исследователям до сих пор не удалось их обнаружить. Но крошечные струны могут двигаться в крошечных пространствах. Когда струна перемещается, осциллируя по ходу своего движения, геометрическая форма дополнительных измерений играет решающую роль, определяя моды резонансных колебаний. Поскольку моды резонансных колебаний струн проявляются в виде масс и зарядов элементарных частиц, мы имеет право утверждать, что эти фундаментальные свойства Вселенной в значительной степени определяются размерами и формой дополнительных измерений. Этот результат представляет собой одно из наиболее глубоких следствий теории струн.
Поскольку дополнительные измерения оказывают столь глубокое влияние на фундаментальные физические свойства Вселенной, мы должны с неослабевающей энергией исследовать, как выглядят эти свернутые измерения.
Как выглядят свернутые измерения?Дополнительные пространственные измерения теории струн не могут быть свернуты произвольным образом: уравнения, следующие из теории струн, существенно ограничивает геометрическую форму, которую они могут принимать. В 1984 г. Филипп Канделас из университета штата Техас в г. Остине, Гари Горовиц и Эндрю Строминджер из университета штата Калифорния в г. Санта-Барбара, а также Эдвард Виттен показали, что этим условиям удовлетворяет один конкретный класс шестимерных геометрических объектов. Они носят название пространств Калаби-Яу (или многообразий Калаби-Яу), в честь двух математиков, Эудженио Калаби из университета штата Пенсильвания и Шин-Туна Яу из Гарвардского университета, исследования которых в близкой области, выполненные еще до появления теории струн, сыграли центральную роль в понимании этих пространств. Хотя математическое описание пространств Калаби-Яу является довольно сложным и изощренным, мы можем получить представление о том, как они выглядят, взглянув на рисунок8).
Пример пространства Калаби-Яу показан на рис. 8.99). Когда вы будете рассматривать этот рисунок, вы должны помнить, что ему присущи некоторые ограничения. Мы попытались представить шестимерное пространство на двумерном листе бумаги, что неизбежно привело к довольно существенным искажениям. Тем не менее, рисунок передает основные черты внешнего вида пространств Калаби-Яу10). На рис.8.9

Рис. 8.9. Пример пространства Калаби-Яу.
иллюстрируется всего лишь один из многих десятков тысяч возможных видов пространств Калаби-Яу, которые удовлетворяют строгим требованиям к дополнительным измерениям, вытекающим из теории струн. Хотя принадлежность к клубу, в который входят десятки тысяч членов, нельзя считать эксклюзивной особенностью, вы можете сравнить это число с бесконечным числом форм, которые возможны с чисто математической точки зрения; в этом смысле пространства Калаби-Яу действительно являются достаточно редкими.
Чтобы получить общую картину, вы должны теперь мысленно заменить каждую из сфер, показанных на рис. 8.7 и представляющих два свернутых измерения, пространством Калаби-Яу. Иначе говоря, как показано на рис. 8.10, в каждой точке нашего привычного трехмерного пространства согласно теории струн имеется шесть доселе неведомых измерений, тесно свернутых в одну из этих довольно причудливых форм.

Рис. 8.10. Согласно теории струн Вселенная имеет дополнительные измерения, свернутые в пространство Калаби-Яу.
Эти измерения представляют собой неотъемлемую и вездесущую часть структуры пространства, они присутствуют повсюду. Например, если вы опишете рукой широкую дугу, ваша рука будет двигаться не только в трех развернутых измерениях, но и в этих свернутых. Конечно, поскольку эти свернутые измерения столь малы, ваша рука в своем движении пересечет их бесчисленное количество раз, снова и снова возвращаясь к исходной точке. Размеры этих измерений настолько малы, что в них не слишком много места для перемещения таких огромных объектов, как ваша рука, и все они «размазываются»: закончив движение руки, вы остаетесь в полном неведении о путешествии, которое она совершила сквозь свернутые измерения Калаби-Яу.
Читать дальшеИнтервал:
Закладка: