Андрей Несмеянов - Радиоактивные изотопы и их применение
- Название:Радиоактивные изотопы и их применение
- Автор:
- Жанр:
- Издательство:Военное Издательство Министерства обороны Союза ССР
- Год:1958
- Город:Москва
- ISBN:нет данных
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Андрей Несмеянов - Радиоактивные изотопы и их применение краткое содержание
Широта научных проблем, изучаемых с помощью изотопов, неизмерима: здесь исследования целительных свойств лекарств и открытие загадки древних статуй, анализ глубоководных морских отложений и раскрытие тайны происхождения живого и неживого, обмен веществ в микроскопической клетке и величественные проблемы происхождения вселенной.
При помощи радиоактивных изотопов могут быть вскрыты интимнейшие механизмы биохимических процессов в растениях и животных. Излучение радиоактивного распада оказывается в руках исследователей одним из сильнейших рычагов искусственной переделки наследственной природы организмов. Используя эти средства, наука вплотную подошла к решению самых глубоких проблем биологии, связанных с объяснением важнейших физиологических процессов.
Даже такая, казалось бы далекая от атомной физики отрасль, как агрономия, уже не может обойтись без применения различных средств атомной техники.
Радиоактивные изотопы — это важный инструмент современной науки, умножающий человеческую власть над природой. subtitle
6 0
/i/55/718755/Grinya2003.png
0
/i/55/718755/CoolReader.png
Радиоактивные изотопы и их применение - читать онлайн бесплатно полную версию (весь текст целиком)
Интервал:
Закладка:
Метод меток распространен довольно широко. Так, в поисках подземного пути рек в горных местностях гидрологи примешивают к воде рек краски, которые позволяют доказать по выходу окрашенной воды из-под земли в нескольких километрах ниже по течению от места, где была влита краска, связь двух рек между собою. Так с помощью флуоресцена — краски, которая даже при очень сильном разбавлении легко заметна, удалось доказать подземную связь Дуная с рекой, текущей от нее в нескольких километрах.
Недавно способ метки был применен пчеловодами. В улье находится до сорока тысяч пчел, и наблюдение за отдельными группами пчел невозможно без их метки. Пчеловоды делают улей с прозрачной крышей, а пчел, вылетающих на сбор корма, метят краской у поставленных на разных расстояниях и в разных направлениях от улья кормушках. За поведением отмеченных краской пчел легко проследить в улье с прозрачной крышей. Пчеловодам удалось таким путем узнать многие тайны жизни пчел.
Но не можем же мы превратиться в микроскопических гномов, уменьшиться в миллиард раз, чтобы атомы стали для нас подобны пчелам и мы смогли бы их видеть и пометить. Что же делать? Как можно пометить атомы? Только ли глазом можно следить за движением тел? Вспомните прогулку в лесу за грибами. Вы потеряли своего товарища, но вот слышите повторяющийся возглас «ау!» и по этому возгласу легко определяете его местоположение. Значит, по звуку можно следить за движением так же, как с помощью зрения. Теперь представьте себе самолет, который в тумане или ночью идет на посадку. Посадочный аэродром непрерывно посылает в эфир радиосигнал, а летчик принимает этот сигнал с помощью специального приемника и ведет самолет к месту посадки так же точно, как если бы он его видел. Представьте себе корабль, получивший повреждение; его радиостанция непрерывно посылает сигналы бедствия. Эти сигналы позволяют установить местопребывание судна. Представьте себе, наконец, радиолокационную станцию, которая на огромном расстоянии может проследить за движением самолета, корабля, подводной лодки, воспринимая отражение посылаемой ею волны от отыскиваемых целей.
Читателю уже известно, что радиоактивные атомы способны посылать сигнал в виде излучения и что этот сигнал с помощью приборов, описанных в предыдущем разделе, может быть принят — зарегистрирован.
Впервые, как уже было рассказано выше, этот сигнал атомов — радиоактивное излучение — был принят и зарегистрирован Анри Беккерелем при исследовании соединений элемента урана. Этим же воспользовались и Мария и Пьер Кюри при поисках радия и полония. Излучение радия и полония являлось, следовательно, природной меткой, по которой супруги Кюри обнаружили и выделили эти элементы.
Описанные примеры показывают, что радиоактивное излучение может служить для атомов меткой, с помощью которой можно проследить их местонахождение. Но надо иметь в виду, что радиоактивное излучение — это результат радиоактивного распада, и, следовательно, мы можем зарегистрировать только гибель атома, его превращение в другой атом. Вспомним, что радиоактивному распаду подвергаются не все радиоактивные атомы одновременно, распад происходит постепенно, в течение времени, которое зависит от свойств данного радиоактивного элемента, от его периода полураспада. Например, количество атомов радиоактивного фосфора 32 убавится наполовину за 14,3 дня, радиоактивного золота 198 за 2,7 дня, радиоактивной меди 64 за 12,9 часа и т. д.
В процессах, за которыми производят наблюдение с помощью метода меченых атомов, участвует такое большое количество атомов, что превращение даже десятков и сотен тысяч их практически не меняет общего числа атомов, общего количества вещества, убыль его остается незаметной для наблюдателя.
Как уже было сказано, в природных и лабораторных процессах обычно участвуют огромные количества атомов. При этом поведение одинаковых атомов — атомов одного и того же элемента — в одном и том же процессе одинаково. Например, атомы элемента кальция и фосфора, попадающие с пищей в организм человека, идут на построение костных тканей, атомы иода скапливаются в щитовидной железе и т. д. Неотличимо ведут себя и изотопы одного и того же элемента. Если приготовить смесь радиоактивных и нерадиоактивных атомов одного и того же элемента — смесь изотопов, то отделить атомы радиоактивного изотопа от атомов нерадиоактивного изотопа очень трудно. В большинстве природных и лабораторных процессов радиоактивные изотопы ведут себя совершенно так же, как и нерадиоактивные. Например, при сжигании серы, содержащей смесь атомов радиоактивного и нерадиоактивного изотопа, с кислородом соединяются и радиоактивные и нерадиоактивные атомы. При попадании смеси радиоактивных и нерадиоактивных атомов какого-либо элемента внутрь организма человека или животных оба вида атомов ведут себя химически и физически неотличимо.
Однако каждый атом радиоактивного изотопа рано или поздно распадается и дает сигнал в форме излучения. Если же в смеси атомов имеется достаточно большое количество радиоактивных атомов, то они распадаются непрерывно один за другим, все время сигнализируя о местопребывании и движении всей массы атомов данного элемента.
Мы теперь видим, что достаточно к веществу, за которым хотят провести наблюдение, подмешать молекулы этого же вещества, содержащие в своем составе атомы радиоактивного изотопа, чтобы в течение всего процесса знать местопребывание всей массы данного вида атомов по испускаемому атомами изотопа излучению. Метод меченых атомов, следовательно, — это способ наблюдать за поведением данного вида атомов в каком-либо процессе с помощью его радиоактивного изотопа.
Для проведения опыта с использованием метода меченых атомов получают радиоактивные изотопы, а из них — вещества, необходимые для исследования, часть молекул которых содержит радиоактивные атомы. По излучению, исходящему от радиоактивных молекул, следят за поведением и движением таких же молекул, но не содержащих радиоактивных атомов, — следят за всей массой вещества.
Не только радиоактивные изотопы могут быть использованы для метки атомов. У ряда химических элементов таких важных, например, как кислород и азот, нет радиоактивных изотопов с достаточно большой продолжительностью жизни. В этом случае используют нерадиоактивные изотопы элемента, за которым хотят вести наблюдение, с массой, отличающейся от средней массы атомов природного элемента.
Примешивая, например, к обыкновенной воде воду, содержащую кислород с массовым числом 18 (обычный кислород имеет массовое число 16), можно наблюдать за поведением всей массы кислорода по его изотопу с массой 18. Для наблюдения за движением атомов в этом случае используют масспектрометр — прибор, в котором можно определить массу отдельных групп атомов.
Читать дальшеИнтервал:
Закладка: