Моисей Нейман - Термоядерное оружие
- Название:Термоядерное оружие
- Автор:
- Жанр:
- Издательство:Военное Издательство Министерства обороны Союза ССР
- Год:1958
- Город:Москва
- ISBN:нет данных
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Моисей Нейман - Термоядерное оружие краткое содержание
2 0
/i/54/718754/Grinya2003.png
0
/i/54/718754/CoolReader.png
Термоядерное оружие - читать онлайн бесплатно полную версию (весь текст целиком)
Интервал:
Закладка:

Из перечисленных в табл. 4 веществ наиболее доступны, конечно, природные элементы — водород и литий. В природной смеси изотопов водорода содержится обычно лишь около 0,016% дейтерия и почти нет трития. Природный литий состоит на 92,6% из лития 7 и на 7,4% из лития 6.
Состав ядерного горючего водородной бомбыНаиболее эффективной термоядерной реакцией при температурах порядка 10 миллионов градусов, создаваемых взрывом атомного «запала», является указанная в табл. 4 реакция 6 между дейтерием и тритием. Высокая плотность смеси дейтерия и трития может быть достигнута или путем применения сильно сжатых газов, или за счет использования жидких изотопов, что требует весьма низких температур. Наконец, можно использовать химические соединения изотопов водорода. При этом, однако, следует помнить, что всякие добавки более тяжелых ядер приводят к резкому повышению теплоемкости, затруднению поддержания высоких температур и необходимости в связи с этим повысить температуру, создаваемую «запалом».
Из числа соединений водорода, в виде которых можно вводить в бомбу дейтерий и тритий, простыми и доступными являются тяжелая вода и тритиевая вода (их формулы соответственно: D 2O и Т 2О). Кислород в рассмотренных термоядерных реакциях участия не принимает. Он снижает температуру, достигаемую при взрыве, и увеличивает общий балластный вес взрывчатого вещества. Поэтому желательно было применять в качестве термоядерного горючего не тяжелую и тритиевую воду, а дейтерий и тритий в жидком виде.
Однако для хранения этих газов в жидком виде необходимо обеспечить поддержание низкой температуры, для чего приходится строить специальные сосуды с двойными стенками.
Из пространства между стенками откачивают воздух, чтобы уменьшить приток тепла. Такой сосуд помещают внутрь второго сосуда подобного же устройства, в который заливают жидкий азот, имеющий температуру около минус 190° C. Во внутренний сосуд помещают жидкий водород, дейтерий или тритий, хранящиеся при температуре около минус 250° C. Даже из таких сосудов водород сравнительно быстро испаряется. Эти установки имеются лишь в нескольких хорошо оборудованных лабораториях. Ясно, что применение установок указанного типа в водородной бомбе вряд ли целесообразно.
Наиболее легким элементом, способным дать твердое соединение с водородом, является литий, а их соединение — гидрид лития(LiH) представляет собой легкое твердое кристаллическое вещество, по внешнему виду похожее на поваренную соль, но химически весьма активное. Поскольку существуют два изотопа лития и три изотопа водорода, очевидно, что возможны 6 различных по изотопному составу гидридов лития, формулы которых приведены в табл. 5.
Таблица 5
Гидриды лития | ||
---|---|---|
Изотопный состав | Формула гидрида лития | |
изотоп лития | изотоп водорода | |
Литий 6 | Протий (обыкновенный водород) | Li 6H 1 |
Литий 7 | Протий | Li 7H 1 |
Литий 6 | Дейтерий | Li 6H 2 |
Литий 7 | Дейтерий | Li 7H 2 |
Литий 6 | Тритий | Li 6H 3 |
Литий 7 | Тритий | L1 7H 3 |
При конструировании водородной бомбы большое значение имеет объем, занимаемый термоядерным горючим, а также вес оболочки, в которой оно помещается. Рис. 15 дает представление о соотношении объемов, занимаемых 1 кг дейтерия в жидком виде, в виде сжатого до 200 атм газа, в виде тяжелой воды и в виде соединения с литием — дейтерида лития. Из рисунка видно, какое преимущество в отношении занимаемого объема имеют тяжелая вода и гидрид лития.

Следует также указать на невыгодность использования сжатого водорода, для хранения которого приходится применять стальные баллоны, во много десятков раз по весу превосходящие вес заключенного в них водорода.
Приведенные выше соображения показывают, что изотопы водорода в термоядерном оружии целесообразно применять не в свободном виде, а в виде химических соединений.
Указанные в табл. 4 термоядерные реакции являются основными из числа обсуждавшихся в литературе с точки зрения возможности их использования в водородной бомбе.
Из всех перечисленных веществ, как было уже сказано, легче всего может быть взорвана дейтериево-тритиевая смесь. Однако изготовление больших водородных бомб на основе трития мало вероятно из-за высокой стоимости трития и трудностей его получения в большом количестве. С другой стороны, даже реакции 4 и 5 с дейтерием, не говоря уже о реакции 8–10 с литием, требуют начальной температуры порядка десятков миллионов градусов, вряд ли обеспечиваемой атомным «запалом». Поэтому следует считать, что тритий используется в современных водородных бомбах лишь в качестве побудителя, обеспечивающего дальнейшее повышение температуры и возможность протекания реакций с участием водорода, дейтерия и обоих изотопов лития.
В свете всего сказанного действие водородной бомбы можно представить следующим образом. Сначала внутри бомбы происходит цепной взрыв за счет реакции деления урана или плутония. Если бы деление распространилось на всю массу урана или плутония и при этом вся энергия превратилась бы в тепловую, температура достигла бы сотен миллионов градусов. Фактически, однако, температура во много раз ниже потому, что делится лишь малая часть «запала» и при этом только часть энергии выделяется в виде тепловой.
Поэтому по имеющимся в литературе сведениям температура, развиваемая при взрыве атомного «запала», может обеспечить быстрое протекание лишь термоядерной реакции дейтерия с тритием. В смеси этих изотопов водорода реакция в заметной степени пройдет в течение нескольких миллионных долей секунды, причем температура резко повысится и достигнет десятков миллионов градусов, что может обеспечить протекание реакций 4, 5, 8, 9 и 10. Среди последних реакций наибольший интерес представляет реакция 10, сопровождающаяся большим выделением тепла и происходящая в обычном гидриде лития — дешевом и доступном в больших количествах веществе.
При протекании в гидриде лития термоядерной реакции температура может еще повыситься. Разумеется, в случае дальнейшего повышения температуры до сотен и более миллионов градусов можно осуществить термоядерные реакции с участием более тяжелых элементов, например, бора, бериллия, углерода, азота и кислорода. Надо, однако, отметить, что тепловые эффекты этих реакций меньше тепловых эффектов реакций, приводящих к образованию ядер гелия из водорода.
Читать дальшеИнтервал:
Закладка: