Алексей Левин - Белые карлики. Будущее Вселенной
- Название:Белые карлики. Будущее Вселенной
- Автор:
- Жанр:
- Издательство:Альпина нон-фикшн
- Год:2021
- Город:Москва
- ISBN:978-5-0013-9373-3
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Алексей Левин - Белые карлики. Будущее Вселенной краткое содержание
А ведь судьба превратиться в таких обитателей космического пространства ждет почти все звезды, кроме самых массивных.
История открытия белых карликов и их изучение насчитывает десятилетия, и автор не только подробно описывает их физическую природу и во многом парадоксальные свойства, но и рассказывает об ученых, посвятивших жизнь этим объектам Большого космоса.
Кроме информации о сверхновых звездах и космологических проблемах, связанных с белыми карликами, читатель познакомится с историей радиоастрономии, узнает об открытии пульсаров и квазаров, о первом детектировании, происхождении и свойствах микроволнового реликтового излучения и его роли в исследовании Вселенной.
Белые карлики. Будущее Вселенной - читать онлайн бесплатно ознакомительный отрывок
Интервал:
Закладка:
Затем последовала модификация. Чтобы выйти к статичному решению, Эйнштейн вписал в левую часть уравнения дополнительное слагаемое. Выглядит оно по-школьному просто — это метрический тензор, помноженный на положительную константу. Эйнштейн обозначил ее «лямбда» (одиннадцатая буква греческого алфавита), причем в строчной версии — λ. Позже возникла традиция пользоваться заглавной Λ.
Эйнштейн переделывал свое уравнение не с легким сердцем. «Надо признать, — отметил он в той самой статье 1917 г. „Вопросы космологии и общая теория относительности“, — что введенное расширение уравнений гравитационного поля отнюдь не оправдывается тем, что нам достоверно известно о тяготении… Этот член нужен лишь для того, чтобы обеспечить квазистатичное распределение материи, которое вытекает из малости звездных скоростей» [33] Эйнштейн А. Работы по теории относительности. — М.: Амфора, 2008.
. Он назвал добавленный член космологическим, имея в виду, что его влияние может сказаться лишь в масштабах всей Вселенной. Это обстоятельство связано с исключительной малостью коэффициента при метрическом тензоре, который называют космологической постоянной.
Нередко говорят, что эту константу можно рассматривать как плотность энергии и давления вакуума. Это верно, но сам Эйнштейн не только не делал подобного вывода, но и не предлагал для λ никакой явной интерпретации. А вот неявная имела место. Поставив космологический член в левую часть своего уравнения, он тем самым модифицировал закон тяготения в космологических масштабах. К современному пониманию лямбды как вакуумной энергии первым пришел бельгийский космолог Жорж Анри Леметр, который в конце 1920-х гг. вслед за Александром Фридманом (но совершенно независимо) построил общепринятую ныне нестационарную модель однородной и изотропной Вселенной, которая спустя два десятка лет превратилась в основу теории Большого взрыва.
Поначалу космологи отнеслись к лямбде с уважением. Модифицированное уравнение Эйнштейна использовал де Ситтер, предложивший в 1917 г. модель мира без физической материи, но с космологической константой. Этот космос, как и эйнштейновский, сферичен, но не замкнут в постоянном объеме, а расширяется от некоего минимального радиуса до бесконечности (поэтому такой мир не возникает из бесконечно малого объема, как у Фридмана и Леметра). В дальнейшем радиус растет со временем по экспоненте, показатель которой пропорционален квадратному корню из лямбды (в модели Фридмана он увеличивается не быстрее, чем пропорционально времени).
Из модели де Ситтера следует, что расширение пространства увеличивает длину волн электромагнитного излучения. Однако сам де Ситтер этого не заметил, скорее всего, потому, что геометрические следствия его модели замаскированы весьма экзотической системой координат. В итоге он решил, что красное смещение обусловлено воздействием гравитации. Подлинная природа этого явления, названного эффектом де Ситтера, выяснилась спустя много лет.
Космологическую постоянную учитывал и великий российский «модельер Вселенной» Александр Александрович Фридман, но скорее формально. А в 1929 г. Эдвин Хаббл опубликовал свой знаменитый закон V = H 0R, утверждающий, что дальние галактики разбегаются во всех направлениях и что их лучевая скорость пропорциональна расстоянию до нашей планеты. Это непосредственно следует из моделей Фридмана и Леметра с нулевым значением лямбды, на что Леметр обратил внимание за два года до появления первой статьи Хаббла. Таким образом, получалось, что ОТО позволяет реалистично описать эволюцию мироздания без космологического члена, что Эйнштейн и признал в 1931 г.
Георгий Гамов в автобиографии «Моя мировая линия» [34] Гамов Дж. Моя мировая линия: Неформальная автобиография. — М.: Наука, 1994.
сообщил, что Эйнштейн назвал космологический член «возможно, крупнейшей» из своих ошибок (предположительно, научных). Так это или не так, в точности неизвестно, поскольку сам Эйнштейн ничего подобного не писал, а мемуаристы подчас ошибаются. Во всяком случае, с начала 1930-х гг. большинство астрономов забыло о космологическом члене.
Однако же Эйнштейн оставил ему шанс на возрождение. В 1932 г. он и де Ситтер опубликовали модель нестационарного мира с нулевой пространственной кривизной (это частный случай модели Фридмана, который тот почему-то не рассмотрел). В этой статье они рекомендовали не пользоваться космологической константой, «пока более точные данные наблюдений не позволят определить ее знак и численную величину». Таким образом, Эйнштейн и де Ситтер все же допускали, что лямбда может отличаться от нуля (и даже быть отрицательной). Это предсказание начало подтверждаться лишь через полвека.
Теперь посмотрим, что получится, если космологический член перенести в правую часть уравнения (естественно, с обратным знаком). Формально эта операция означает возникновение вакуумного поля с постоянной плотностью энергии, равной Λс 4/8πG, которое противодействует тяготению. Качественно это можно объяснить так: поскольку лямбда у Эйнштейна положительна, космологический член уменьшает значения всех компонент тензора энергии-импульса, которые и являются «материальным» источником тяготения. Следовательно, он противодействует тяготению, то есть создает антигравитацию. Конечно, это лишь демонстрация «на пальцах», но вычисления ее подтверждают. Отсюда же следует, что космологический член с отрицательной лямбдой усиливает «материальную» гравитацию.
Космологическая постоянная пребывала в забвении вплоть до начала 1980-х гг. Затем интерес к ней возродился, причем по двум независимым причинам.
Фактор первый. К этому времени в космологии постепенно закрепилась инфляционная модель Большого взрыва, подготовленная и развитая при значительном участии российских исследователей. Эта теория утверждает, что в начале существования Вселенной, когда ее возраст, скорее всего, не превышал 10 –36–10 –35секунд, она какое-то время расширялась по экспоненте, как в модели де Ситтера. Такое расширение запустил фазовый переход первичной субстанции мироздания, породивший вакуумное скалярное поле с гигантской положительной плотностью энергии. Первоначально оно было сосредоточено внутри сверхмикроскопического пузырька диаметром 10 –33см, который и стал зародышем нашей Вселенной. Хотя время расширения было крайне недолгим, Вселенная успела приобрести макроскопические размеры.
Новая модель быстро обрела признание и заставила вспомнить про космологическую постоянную, поскольку формально та выглядела прямым аналогом плотности скалярного поля, запустившего «раздувание» пространства. Правда, в первых версиях инфляционной модели это поле было весьма нестабильным. По окончании инфляции оно отдало свою энергию на рождение обычных частиц и исчезло, так что затем Вселенная эволюционировала согласно модели Фридмана с нулевым значением лямбды, предписывающей расширение с падающей скоростью. Однако некоторые теоретики допускали, что плотность вакуумного поля могла не упасть до нуля, а стабилизироваться где-то неподалеку. Тогда в уравнении Эйнштейна остается космологический член, пусть и с очень маленькой лямбдой. Сторонники этой идеи были немногочисленны, но авторитетны.
Читать дальшеИнтервал:
Закладка: