Алексей Левин - Белые карлики. Будущее Вселенной
- Название:Белые карлики. Будущее Вселенной
- Автор:
- Жанр:
- Издательство:Альпина нон-фикшн
- Год:2021
- Город:Москва
- ISBN:978-5-0013-9373-3
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Алексей Левин - Белые карлики. Будущее Вселенной краткое содержание
А ведь судьба превратиться в таких обитателей космического пространства ждет почти все звезды, кроме самых массивных.
История открытия белых карликов и их изучение насчитывает десятилетия, и автор не только подробно описывает их физическую природу и во многом парадоксальные свойства, но и рассказывает об ученых, посвятивших жизнь этим объектам Большого космоса.
Кроме информации о сверхновых звездах и космологических проблемах, связанных с белыми карликами, читатель познакомится с историей радиоастрономии, узнает об открытии пульсаров и квазаров, о первом детектировании, происхождении и свойствах микроволнового реликтового излучения и его роли в исследовании Вселенной.
Белые карлики. Будущее Вселенной - читать онлайн бесплатно ознакомительный отрывок
Интервал:
Закладка:
Материи это довольно сложные, в двух словах о них не рассказать. Тонкую структуру анизотропий фонового излучения удалось детально выявить в первую очередь за счет выноса измерительной аппаратуры на космические платформы. Первой такой платформой стал американский искусственный спутник Земли Cosmic Background Explorer (COBE), выведенный на орбиту 18 ноября 1989 г. Он проработал в космосе немногим больше четырех лет (точнее, 4 года, 1 месяц и 5 суток) и полностью преобразил наши знания о спектральных характеристиках реликтового излучения. Несмотря на то что угловое разрешение его аппаратуры было весьма скромным, всего 7°, она впервые измерила температурные флуктуации реликтового излучения. К немалому удивлению, они оказались очень малы — всего лишь порядка стотысячной доли кельвина. Неслучайно в 2006 г. двое научных руководителей этого проекта — Джон Мазер и Джордж Смут — были удостоены Нобелевской премии по физике. Мазер руководил созданием спектрофотометра FIRAS, установленного на COBE, а Джордж Смут был лидером команды, которая работала на другом приборе, радиометре DMR.
После публикации данных с COBE стало ясно, что угловые флуктуации температуры реликтового излучения не просто существуют, но и очень многое говорят о состоянии дел в ранней Вселенной. Они сильно укрепили фундамент теории Большого взрыва и позволили создавать намного более точные модели эволюции Вселенной. Под их влиянием в последующие годы активизировались измерения этих флуктуаций с помощью наземной и аэростатной аппаратуры. Кроме того, уже в нашем столетии были запущены два космических аппарата с более чувствительными приборами, выполняющими эти же функции. Американский космический зонд Wilkinson Microwave Anisotropy Probe (WMAP), названный в честь Дэвида Вилкинсона, в 2001 г. ушел в космос ко второй точке Лагранжа, где и проработал до 2010 г. Более совершенная космическая обсерватория имени Планка, созданная Европейским космическим агентством, действовала в той же второй точке Лагранжа с июля 2009 г. до октября 2013 г. Пока эти станции исчерпывают список космических аппаратов, специально (хотя и не исключительно) заточенных под сбор информации об анизотропии реликтового излучения.
Однако не стоит забывать, что первое успешное выявление анизотропии реликтового излучения с помощью аппаратуры космического базирования было совершено в России. Это был эксперимент «Реликт», осуществленный в середине 1980-х гг. сотрудниками Института космических исследований АН СССР. На одном из спутников серии «Прогноз» был установлен высокочувствительный радиометр, который в течение полугода измерял энергию фонового микроволнового излучения. Правда, он действовал лишь на одной частоте, в то время как микроволновой радиометр COBE оперировал на трех (31,5, 53 и 90 гигагерц) и потому давал больше информации. Анализ результатов с «Прогноза» затянулся на несколько лет, но в конце концов он позволил обнаружить вариации температуры реликтового излучения. Об этом было доложено на семинаре в ГАИШ в январе 1992 г., за три месяца до того, как Джордж Смут впервые представил аналогичные результаты со спутника COBE на заседании Американского физического общества. Мне довелось беседовать с Джоном Мазером после получения им Нобелевской премии, и он с готовностью признал достижения российских коллег.
Фоновое микроволновое излучение состоит из фотонов, которые освободились из плена горячей космической плазмы, когда длина их волн была приблизительно в 1100 раз меньше (а частота и энергия, соответственно, в 1100 раз больше) нынешних значений. Отношение разности измеренной в нашу эпоху длины волны фотона и ее величины в момент испускания к этой величине называется космологическим красным смещением (то есть красное смещение равно отношению современной и первоначальной длин волн минус единица). Эта величина задает изменение масштабов Вселенной, которые во время рекомбинации в 1100 раз были меньше нынешних. Абсолютное большинство этих фотонов с тех пор путешествуют по космическому пространству без всякого контакта с веществом. Тем не менее некоторые из них все же вступали в различные взаимодействия, которые могли либо подкачать их дополнительной энергией, либо привести к энергетическим потерям.
И что же из этого следует? Температурные флуктуации реликтового излучения прежде всего отражают физические условия во Вселенной в эпоху рекомбинации (а фактически и до нее). Эти условия проявляют себя в тех видах его анизотропии, которые называют первичными. Последующее путешествие фотонов сквозь космос вызывает дополнительные отклонения от идеальной изотропии, и их, естественно, именуют вторичными. Это разграничение двух основных типов анизотропий совершенно необходимо для понимания их причин и механизмов возникновения.
Как уже было отмечено, ученые приступили к поиску угловых температурных флуктуаций реликтового излучения практически сразу после его открытия. Долгое время он практически не дал ничего за исключением демонстрации эфирного дрейфа. Это было непонятно и даже тревожно. Тогда считали, что вещество Вселенной почти целиком состоит из барионов (протонов и ионизированных ядер гелия) и электронов, причем последние по малости своей массы практически не должны влиять на космические гравитационные поля. Теория утверждала, что в эпоху красного смещения, равного 1100, барионы были распределены в пространстве с достаточно большими флуктуациями плотности — на уровне 0,1 % (при меньших флуктуациях к нашему времени скопления и сверхскопления галактик просто не смогли бы возникнуть). До наступления рекомбинации фотоны и ионы сильно взаимодействовали друг с другом, хотя и не прямо, а посредством электронного газа (фотоны рассеивались на свободных электронах, которые воздействовали на движение ионов благодаря кулоновскому электростатическому притяжению). Поэтому плотность и температура фотонов должны были флуктуировать пропорционально плотности барионов. Коль скоро относительная величина колебаний температуры фотонного газа после рекомбинации не изменилась, она и сегодня должна оставаться на уровне десятой доли процента — то есть составлять милликельвины.
Такие флуктуации искали годами, но не могли обнаружить. Интересно, что в середине 1980-х гг. это обстоятельство значительно укрепило позиции тогда еще далеко не общепринятой гипотезы темной материи. Темная материя по определению никак не взаимодействует с электромагнитным излучением, но подчиняется силам гравитации. Поэтому ее частицы под действием тяготения стягиваются в исполинские комки и втягивают в них барионное вещество. Вычисления показывают, что если доля темной материи в общей массе Вселенной заметно превосходит долю барионного вещества, то величина температурных флуктуаций реликтового излучения на малых угловых масштабах сильно уступает первоначальным теоретическим оценкам. Это означает, что флуктуации барионной плотности в эпоху рекомбинации вполне могли быть на порядки больше, чем фотонные флуктуации. Именно это и подтвердил COBE, обнаруживший, что флуктуации температуры реликтового излучения составляют не десятые, а тысячные доли процента (иными словами, измеряются не милликельвинами, а десятками микрокельвинов).
Читать дальшеИнтервал:
Закладка: