Скотт Бембенек - Механизм Вселенной: как законы науки управляют миром и как мы об этом узнали
- Название:Механизм Вселенной: как законы науки управляют миром и как мы об этом узнали
- Автор:
- Жанр:
- Издательство:неизвестно
- Год:неизвестен
- ISBN:нет данных
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Скотт Бембенек - Механизм Вселенной: как законы науки управляют миром и как мы об этом узнали краткое содержание
Механизм Вселенной: как законы науки управляют миром и как мы об этом узнали - читать онлайн бесплатно ознакомительный отрывок
Интервал:
Закладка:
Сегодня Изонцо расположена на территории нынешней Словении. В 60 милей в длину, река лежит в долине, по обе стороны от которой находятся горы, и течет с севера на юг, беря начало в Юлийских Альпах и впадая в Адриатическое море. В течение Первой мировой войны она находилась на территории Австро-Венгрии, вдоль ее границы с Италией. Между 1915 и 1917 годами на реке Изонцо прошло 12 битв.
208
В 1916 году Эйнштейн закончил работу над общей теорией относительности. Он показал, что в присутствии вещества пространство-время искривляется, что приводит к «силе», которую мы называем силой гравитации. Так что прошли те времена, когда люди думали, что гравитация представляет собой силу, действующую (мгновенно) на расстоянии, приводя к тому, что одно тело притягивается к другому. В 1918 году Герман Вейль (1885–1955) попытался объединить те два взаимодействия, которые были тогда известны физикам, — гравитационное и электромагнитное, в рамках общей теории относительности посредством введения калибровочного преобразования. В пространстве-времени Эйнштейна (Римана) модуль вектора при его движении от точки к точке по пространственно-временной траектории остается постоянным. Однако с калибровочными преобразованиями Вейля все меняется, и теперь модуль вектора при движении в этом новом (не римановом) пространстве-времени будет меняться. Хорошей новостью было то, что в рамках этого математического подхода Вейль успешно объединил гравитацию и электромагнетизм. Он отправил свои результаты Эйнштейну, тот был сначала от них в восторге, но в конечном счете не смог принять реальные физические последствия подхода Вейля. В теории Вейля находит отражение тот факт, что длина измерительного стержня будет меняться от точки к точке при его движении вдоль траектории в пространстве-времени. Другими словами, значение, полученное при измерении в одной точке, будет отличаться от значения, измеренного в другой точке, просто потому, что положение в пространстве-времени меняется. Более того, темп изменения во времени будет также меняться от точки к точке на пространственно-временной траектории. То есть измерения длины и времени больше не являлись абсолютными (какими они были в теории Эйнштейна). Вместо этого они становятся относительными и зависят от положения, где они были проведены, — они локально зависимы.
В частности, Эйнштейн указал на то, что, согласно теории Вейля, атомные спектры определенного химического элемента будут зависеть от того, где и когда были проведены измерения. Однако мы знаем, что физически дело обстоит иначе. В 1922 году в своей статье «О замечательном свойстве квантовых орбит одного электрона» Шрёдингер вернулся к подходу Вейля. Он рассмотрел электрон на орбите в атоме водорода согласно атомной модели Бора. Далее он вообразил связанный с ним вектор, величина которого менялась в соответствии с теорией Вейля при движении электрона (в пространстве и во времени) от точки к точке по своей орбите. Какое именно физическое свойство представлял вектор, Шрёдингеру тогда было не ясно. Однако он отметил, что математически (с правильным выбором неопределенной постоянной, в качестве которой он взял постоянную Планка) было возможно сохранить модуль вектора электрона при его движении по орбите, тем самым устраняя любые физически не желаемые эффекты. Другими словами, оказалось, что в этом случае теория Вейля была физически реализуемой. Хотя Шрёдингер не смог установить физический смысл предположенного вектора, он заметил: «Сложно поверить, что этот результат — всего-навсего случайное математическое следствие квантовых условий и не имеет более глубокого физического смысла». Позднее Шрёдингер поймет, что физический смысл его неопределенного вектора был не чем иным как связанным с длиной волны де Бройля. Интересно подумать, что, если бы Шрёдингер не был так измучен, возможно, он смог бы на основе этого намека написать свой величайший труд уже тогда, а не четыре года спустя.
209
На самом деле волновое уравнение он знал еще до того, как сделал этот «вывод», по всей видимости, получив уравнение очень простыми математическими манипуляциями. Вывести волновое уравнение Шрёдингера из классической механики напрямую невозможно. Это связано с тем, что вдобавок к математическим формулам требуются особые постулаты. В частности, Шрёдингер потребовал, чтобы волновая функция как решение его уравнения была вещественной, однозначной, ограниченной и имеющей непрерывную вторую производную. К моменту написания своей четвертой статьи он пришел к заключению, что иногда волновая функция может быть комплексной (то есть не вещественной) величиной.
210
Эйнштейн на самом деле рассмотрел три процесса: спонтанное излучение, вынужденное излучение и поглощение. Гейзенберг сосредоточился только на спонтанном излучении, при котором переход осуществляется без взаимодействия со светом. Именно на спонтанное излучение Эйнштейн обратил внимание в конце своей статьи, отмечая, что из его теории следовало, что направление импульса отдачи для этого процесса — к его величайшему сожалению — определен исключительно случаем.
211
Именно эти последние две статьи составляют основу матричного подхода к квантовой механике, преподаваемого в настоящее время.
212
Импульс электрона после столкновения можно определить с помощью детектора. Импульс фотона до столкновения можно установить с помощью источника света наподобие лазера, где известны как модуль, так и направление импульса фотона. Тем самым остается определить импульс фотона после столкновения, чтобы найти начальный импульс электрона.
213
Сегодня мы знаем, что на самом деле это постоянная Планка, поделенная на 4π.
214
Задний экран расположен на расстоянии, значительно превышающем расстояние между центрами двух щелей.
215
Читателю, которому интересно узнать больше об этой области исследования, предлагаю взглянуть на книги Брайана Грина.
216
Посмотрите книгу Брайана Грина «Скрытая реальность. Параллельные миры и глубинные законы космоса».
217
Я рекомендую «Вечность. В поисках окончательной теории времени» Шона Кэрролла.
Интервал:
Закладка: