Роберт Сойер - Вселенная. Емкие ответы на непостижимые вопросы
- Название:Вселенная. Емкие ответы на непостижимые вопросы
- Автор:
- Жанр:
- Издательство:АСТ
- Год:2020
- Город:М.
- ISBN:978-5-17-114287-2
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Роберт Сойер - Вселенная. Емкие ответы на непостижимые вопросы краткое содержание
В этой книге собраны лекции ученых, которые многие годы работали над тем, чтобы воссоздать прошлое вселенной и представить ее структуру. Они познакомят с самыми смелыми теориями, некоторые из которых были проверены и доказаны, а некоторые еще ждут экспериментальной проверки, недоступной на нынешнем этапе развития технологий.
Выскажутся на этих страницах и те, кто сумел на основе современных данных нарисовать будущее вселенной, нашей планеты и наше собственное.
Вселенная. Емкие ответы на непостижимые вопросы - читать онлайн бесплатно ознакомительный отрывок
Интервал:
Закладка:
Расстояние настолько мало, что на этом уровне движения зеркал LIGO регулируются законами не классической, а скорее квантовой физики. Например, принцип неопределенности Гейзенберга гласит, что сам акт столь точного измерения местоположения зеркала весом 40 килограммов неизбежно нарушит его скорость на величину, различимую для LIGO . Мы никогда еще не видели, чтобы объект размером с человека вел себя квантово-механически. В LIGO мы собираемся сделать это в течение следующих нескольких лет, и для этого мы используем принципы нового раздела науки – квантовой теории информации. Я и мои студенты провели большую часть 1980-х годов, теоретически исследуя необходимую технологию, а в начале 2000-х, наконец, у нас появились первые практические разработки.
Проект LIGO сейчас приближается к зениту. В 1990-х годах мои коллеги-экспериментаторы под руководством Барри Бариша (из Калтеха) сконструировали оборудование для размещения наших детекторов гравитационных волн, а с 2000 по 2005 год они установили детекторы первого поколения и тщательно калибровали их, пока не достигли нужной чувствительности. С 2005 по 2010 год мы проводили первоначальный поиск космических гравитационных волн не только от сталкивающихся черных дыр, но и от других источников. Мы ничего не нашли, но это было ожидаемо.
Когда мы с коллегами представляли проект LIGO , мы предупреждали, что детекторы первого поколения могут быть недостаточно хороши, чтобы засечь волны. Тем не менее, их необходимо было сконструировать, получить опыт работы с ними для создания детекторов второго поколения ( Advanced LIGO ), которые намного сложнее технически и будут обладать куда большей чувствительностью – достаточной, чтобы увидеть богатое разнообразие гравитационных волн. Наша группа экспериментаторов начала установку Advanced LIGO в октябре 2010 года, и дело идет очень неплохо. К 2017 году, а возможно, и раньше, эти детекторы должны зарегистрировать много волн. Вкупе с аналогичными детекторами в Европе (проект Virgo французов, итальянцев и голландцев, проект Geo Project немцев и британцев) и другими астрономическими инструментами LIGO знаменует вступление в новую эру мультиканальной астрономии.
LIGO и другие подобные обсерватории смогут наблюдать черные дыры – при условии, что эти дыры легче тысячи солнц. Боле тяжелые черные дыры – сверхмассивные дыры в центрах галактик – создают гравитационные волны с куда большей диной волны (порядка расстояния между Землей и Луной или Землей и Солнцем) и гораздо более низкой частотой (один цикл за минуты, или часы, или большие промежутки времени). Такие волны мы планируем обнаруживать и наблюдать с помощью LIGO -подобного детектора в космосе: три независимых космических аппарата, оснащенных лазерными лучами. Европейское космическое агентство (ЕКА) планирует космическую миссию такого рода – она называется LISA (лазерная интерферометрическая космическая антенна) – первый пробный полет планируется в 2014 году. Американское космическое агентство NASA раньше было партнером ЕКА в LISA , но было вынуждено отказаться от участия в этой и в ряде других миссий из-за огромных перерасходов в проекте космического телескопа имени Джеймса Уэбба.
Для еще более тяжелых черных дыр, которые весят миллиарды, а не миллионы Солнц, необходим детектор третьего типа. Их волны имеют длину, намного превышающую по размерам Солнечную систему, и долгий цикл – от месяцев до лет. Такие огромные гравитационные волны можно искать с помощью LIGO -подобных детекторов, в которых одно из «зеркал» (на самом деле, просто движущаяся масса) – это наша Земля, а второе – нейтронная звезда – пульсар в далеком межзвездном пространстве. Радиотелескопы на Земле измеряют радиоимпульсы от десятков таких пульсаров, ища крошечные нарушения во времени прихода импульсов, вызванные гравитационными волнами. Эта международная коллаборация по исследованию радиопульсаров ( International Pulsar Timing Array ), вероятно, зарегистрирует первые гравитационные волны в течение следующих десяти лет, или пяти, если нам повезет [10] На сегодня такие события еще не зарегистрированы. – Прим. ред.
.
Черные дыры состоят из искривленного пространства и времени – и это искривление демонстрирует множество интересных качеств и эффектов. Я рассказал вам лишь про один из них: вихри скручивающегося пространства, сталкивающиеся и генерирующие кольца или спирали гравитационных волн, летящих наружу из черных дыр. Из черных дыр также исходят так называемые тендекс-линии. Они интереснейшим образом растягивают и сжимают пространство и также участвуют в генерации гравитационных волн.
Численное моделирование – мощный инструмент для теоретических исследований этих вихрей и тендексов. Наблюдения гравитационных волн позволят сделать выводы об их природе и покажут нам все их богатое разнообразие и их влияние на вселенную. Эти инструменты – численное моделирование и детекторы гравитационных волн – открывают золотую эру в исследованиях черных дыр.
Кип Торн
Исследуя искривленную сторону вселенной при помощи гравитационных волн
В программу третьего фестиваля Starmus был включен мультимедийный концерт, иллюстрирующий «искривленную сторону вселенной» и ее исследование с помощью гравитационных волн. Этот концерт стал результатом сотрудничества между астрофизиками – специалистами по компьютерному моделированию, которые на основе своих симуляций создали захватывающие видеоклипы, с Полом Франклином, Оливером Джеймсом и их командой специалистов по видеоэффектам. Специалисты из лондонской студии Double Negative соединили эти клипы с другими клипами собственной разработки, смонтировали их, наложив музыку Ганса Циммера и его группы (с участием гитариста Брайана Мэя, который играл под видеоряд, проигрывавшийся на огромном экране). Кип Торн был научным консультантом этого концерта и рассказал аудитории о научной подоплеке показанных видеоклипов. Текст ниже – это отредактированные выдержки из рассказа Кипа.
У нашей вселенной есть искривленная сторона. То есть объекты, полностью или частично состоящие из искривленного пространства-времени. Примерами служат черные дыры, сталкивающиеся черные дыры, сталкивающиеся нейтронные звезды, черная дыра, разрывающая нейтронную звезду, а также (в молодой вселенной) – сеть космических струн и сеть так называемых доменных стен.
Идеальным инструментом для наблюдения искривленной стороны вселенной является тот тип излучения, который сам состоит из искривленного пространства и времени: гравитационные волны; волны, которые растягивают и сжимают пространство и все, что находится в нем. То есть, все на свете.
Читать дальшеИнтервал:
Закладка: