Андрей Варламов - Физика повседневности. От мыльных пузырей до квантовых технологий
- Название:Физика повседневности. От мыльных пузырей до квантовых технологий
- Автор:
- Жанр:
- Издательство:Литагент Альпина
- Год:2020
- Город:Москва
- ISBN:978-5-0013-9340-5
- Рейтинг:
- Избранное:Добавить в избранное
-
Отзывы:
-
Ваша оценка:
Андрей Варламов - Физика повседневности. От мыльных пузырей до квантовых технологий краткое содержание
Физика повседневности. От мыльных пузырей до квантовых технологий - читать онлайн бесплатно ознакомительный отрывок
Интервал:
Закладка:
Второе начало термодинамики утверждает, что энтропия замкнутой системы уменьшаться не может, то есть разница ( Q 2 / T 2 ) – ( Q 1 / T 1 ) должна всегда быть неотрицательной. В принципе, она могла бы оказаться и равной нулю, но только в том случае, если бы все операции цикла выполнялись столь осторожно, что они были бы обратимыми, то есть в любой момент можно было бы изменить направление стрелок на схеме. На практике это невозможно.
Движение поршня требует затратить механическую энергию W . Поскольку изменение энергии в замкнутом цикле равно нулю, то энергетический баланс приводит к равенству: W = Q 2 – Q 1 . В идеальном случае, когда все процессы являются обратимыми, мы также можем записать ( Q 2 / T 2 ) = ( Q 1 / T 1 ) и в результате найти, что W = Q 2 (1 – T 1 / T 2 ) = Q 1 ( T 2 / T 1 – 1).
Этот цикл является наиболее эффективным циклом для передачи тепла от холодного тела горячему с выделением механической энергии. Обратный цикл (получаемый путем изменения направления стрелок на схеме) называется, в честь физика Сади Карно, циклом Карно (см. главу 7, «Формула Планка»).

Холодильное устройство. Газ (обозначен желтым цветом) помещается в холодную камеру (синяя). Там он получает количество тепла Q 1 и далее перемещается в горячую (красную) камеру, где отдает количество тепла Q 2 . Изотермический процесс подразумевает «при постоянной температуре» адиабатический процесс – «без теплообмена с внешней средой». Устройство представляет собой холодильник, если оно используется для охлаждения холодной камеры, или тепловой насос, если цель заключается в нагревании горячей камеры
Совершенно иным способом нагрева является тепловой насос, впрочем, также питаемый электричеством. Он забирает тепло оттуда, где оно не нужно, и переносит туда, где в нем есть необходимость. Для выполнения подобного теплопереноса, согласно второму началу термодинамики (см. главу 7, «Формула Планка»), необходимо расходовать энергию. Замечательное свойство теплового насоса заключается в том, что расход этой энергии меньше, чем в случае отопления традиционным нагревателем! Но насколько именно?
Показано (см. главу 13, врезку «Передача тепла от холодного источника горячему»), что для поддержания в квартире температуры T 2 при наружной температуре T 1 тепловой насос для компенсации потери тепла Q 2 затратит электрическую энергию W :
W = Q 2 (1 – T 1 / T 2 ),
где W и Q 2 измеряются в джоулях (Дж), а T 1 и T 2 – в кельвинах (K).
Давайте сравним эффективности теплового насоса и электрического радиатора, для которого количество тепла Q 2 , передаваемого окружающей среде, практически совпадает с потребляемой электрической энергией W . Для теплового насоса при T 1 = 0 °C = 273 K и T 2 = 20 °C = 293 K потребляемая энергия W примерно равна 0,07 Q 2 . То есть, чтобы нагреть помещение тепловым насосом, нужно затратить лишь 7 % энергии, которая понадобилась для той же цели при использовании электрического радиатора! На практике из-за потерь расход энергии при использовании теплового насоса оказывается несколько больше 7 %, однако он все равно значительно меньше 100 % потребления электрического нагревателя.

6. Принцип работы холодильника
Скажем несколько слов о реальных тепловых насосах и иных, сходных с ними приборах, – холодильниках (илл. 6). В обоих случаях теплопередача осуществляется посредством хладагента – жидкости, которая для поддержания разности температур переносится по трубопроводу, контактируя попеременно то с холодным, то с горячим телом (эта жидкость играет ту же роль, что и цилиндр с поршнем, пример которого мы рассмотрели в главе 13, «Передача тепла от холодного источника горячему»). При этом жидкость претерпевает ряд переходов из жидкого в газообразное состояние и обратно. Именно эти фазовые преобразования и делают процесс эффективным, ибо превращение жидкости в газ требует поглощения ею значительного количества энергии.
В отличие от теплового насоса, который расходует механическую энергию на перенос тепла, тепловой двигатель в наших автомобилях превращает тепло Q , выделяющееся при сгорании топлива, в необходимую для его движения механическую энергию W . Эффективность двигателя оценивается посредством так называемого коэффициента полезного действия (КПД), который равен отношению произведенной двигателем полезной энергии к энергии затраченной; чем КПД выше, тем двигатель эффективнее. Второе начало термодинамики неизбежно ограничивает эффективность W / Q любого теплового двигателя. Когда тепло передается от горячего источника с температурой T 2 (например, камеры сгорания в цилиндре топливного двигателя) холодному термостату с температурой T 1 (снаружи), то КПД идеального теплового двигателя, функционирующего по циклу Карно (см. главу 13, «Передача тепла от холодного источника горячему»), равен (1 – T 1 /T 2 ). В настоящее время наилучший КПД теплового двигателя, сжигающего бензин, составляет около 35 %: большая часть внутренней энергии, высвобождающейся при сгорании топлива, рассеивается в окружающей среде в виде тепла. Таким образом, двигатель внутреннего сгорания гораздо менее эффективен по сравнению с электрическим двигателем, КПД которого составляет около 95 %. Поэтому сегодня лишь ограниченная автономность электромобилей задерживает их широкое распространение, а их будущее напрямую зависит от дальнейших успехов в создании новых поколений эффективных аккумуляторов большой емкости.

7. а.Щелочные батарейки, на которых работают, например, игровые приставки, преобразуют химическую энергию в электрическую. b.Аккумуляторы наших мобильных телефонов, состоящие из набора нескольких батарей, действуют по тому же принципу. В отличие от батареек, аккумулятор может быть многократно перезаряжен: при прохождении тока от внешнего источника химическая реакция в нем протекает в противоположном направлении, и реагенты восстанавливаются
Читать дальшеИнтервал:
Закладка: